ﻻ يوجد ملخص باللغة العربية
We study nondiffusive thermal transport by phonons at small distances within the framework of the Boltzmann transport equation (BTE) and demonstrate that the transport is significantly affected by the distribution of phonons emitted by the source. We discuss analytical solutions of the steady-state BTE for a source with a sinusoidal spatial profile, as well as for a three- dimensional Gaussian hot spot, and provide numerical results for single crystal silicon at room temperature. If a micro/nanoscale heat source produces a thermal phonon distribution, it gets hotter than predicted by the heat diffusion equation; however, if the source predominantly produces low-frequency acoustic phonons with long mean free paths, it may get significantly cooler than predicted by the heat equation, yielding an enhanced heat transport.
Macroscopic quantum phase coherence has one of its pivotal expressions in the Josephson effect [1], which manifests itself both in charge [2] and energy transport [3-5]. The ability to master the amount of heat transferred through two tunnel-coupled
Recently, there have been increasing interests in phonon thermal transport in low dimensional materials, due to the crucial importance for dissipating and managing heat in micro and nano electronic devices. Significant progresses have been achieved f
Previous studies have predicted the failure of Fouriers law of thermal conduction due to the existence of wave like propagation of heat with finite propagation speed. This non-Fourier thermal transport phenomenon can appear in both the hydrodynamic a
Despite the ubiquity of applications of heat transport across nanoscale interfaces, including integrated circuits, thermoelectrics, and nanotheranostics, an accurate description of phonon transport in these systems remains elusive. Here we present a
Surface phonon-polaritons can carry energy on the surface of dielectric films and thus are expected to contribute to heat conduction. However, the contribution of surface phonon-polaritons (SPhPs) to thermal transport has not been experimentally demo