ﻻ يوجد ملخص باللغة العربية
We present HI synthesis imaging of the giant elliptical galaxy IC 1459 and its surroundings with the Australia Telescope Compact Array (ATCA). Our search for extended HI emission revealed a large complex of HI clouds near IC 1459, likely the debris from tidal interactions with neighbouring galaxies. The total HI mass ($sim 10^9$Msun) in the detected clouds spans 250 kpc from the north-east of the gas-rich spiral NGC 7418A to the south-east of IC 1459. The extent and mass of the HI debris, which shows rather irregular morphology and kinematics, are similar to those in other nearby groups. Together with HI clouds recently detected near two other IC 1459 group members, namely IC 5270 and NGC 7418, using Phased-Array Feeds (PAFs) on the Australian Square Kilometer Array Pathfinder (ASKAP), the detected debris make up a significant fraction of the groups intergalactic medium.
We present HI imaging of the galaxy group IC 1459 carried out with six antennas of the Australian SKA Pathfinder equipped with phased-array feeds. We detect and resolve HI in eleven galaxies down to a column density of $sim10^{20}$ cm$^{-2}$ inside a
This paper is based on the multi-band VST Early-type GAlaxy Survey (VEGAS) with the VLT Survey Telescope (VST). We present new deep photometry of the IC1459 group in g and r band. The main goal of this work is to investigate the photometric propertie
IC 1459 is an early-type galaxy (ETG) with a rapidly counter-rotating stellar core, and is the central galaxy in a gas-rich group of spirals. In this work, we investigate the abundant ionized gas in IC 1459 and present new stellar orbital models to c
HI kinematic asymmetries are common in late-type galaxies irrespective of environment, although the amplitudes are strikingly low in isolated galaxies. As part of our studies of the HI morphology and kinematics in isolated late-type galaxies we have
The massive early-type galaxy (ETG) IC 1459 is a slowly rotating galaxy that exhibits a rapidly counter-rotating kinematically decoupled core (KDC, $R_{rm KDC}approx 5^{primeprime}approx 0.1 R_{rm e}$). To investigate the origin of its KDC, we couple