ﻻ يوجد ملخص باللغة العربية
In this paper, we address the issue of enhancing coherence of a state under stochastic strictly incoherent operations. Based on the $l_1$ norm of coherence, we obtain the maximal value of coherence that can be achieved for a state undergoing a stochastic strictly incoherent operation and the maximal probability of obtaining the maximal coherence. Our findings indicate that a pure state can be transformed into a maximally coherent state under a stochastic strictly incoherent operation if and only if all the components of the pure state are nonzero while a mixed state can never be transformed into a maximally coherent state under a stochastic strictly incoherent operation.
We compute analytically the maximal rates of distillation of quantum coherence under strictly incoherent operations (SIO) and physically incoherent operations (PIO), showing that they coincide for all states, and providing a complete description of t
Quantum states transformation under free operations plays a central role in the resource theory of coherence. In this paper, we investigate the transformation from a mixed coherent state into a pure one by using both incoherent operations and stochas
Quantum coherence is one of the key features that fuels applications for which quantum mechanics exceeds the power of classical physics. This explains the considerable efforts that were undertaken to quantify coherence via quantum resource theories.
It is well known that the majorization condition is the necessary and sufficient condition for the deterministic transformations of both pure bipartite entangled states by local operations and coherent states under incoherent operations. In this pape
We characterize the operational capabilities of quantum channels which can neither create nor detect quantum coherence vis-`a-vis efficiently manipulating coherence as a resource. We study the class of dephasing-covariant operations (DIO), unable to