ترغب بنشر مسار تعليمي؟ اضغط هنا

The impacts of the quantum-dot confining potential on the spin-orbit effect

69   0   0.0 ( 0 )
 نشر من قبل Rui Li
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For a nanowire quantum dot with the confining potential modeled by both the infinite and the finite square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit coupling regime. We find that regardless of how small the well height is, there are at least two bound states in the finite square well: one has the $sigma^{x}mathcal{P}=-1$ symmetry and the other has the $sigma^{x}mathcal{P}=1$ symmetry. When the well height is slowly tuned from large to small, the position of the maximal probability density of the first excited state moves from the center to $x e0$, while the position of the maximal probability density of the ground state is always at the center. A strong enhancement of the spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height $V^{c}_{0}$, at which the spin-orbit effect is enhanced to maximal.



قيم البحث

اقرأ أيضاً

We investigate the non-equilibrium charge dynamics of a triple quantum dot and demonstrate how electron transport through these systems can give rise to non-trivial tunnelling paths. Using a real-time charge sensing method we establish tunnelling pat hways taken by particular electrons under well-defined electrostatic configurations. We show how these measurements map to the chemical potentials for different charge states across the system. We use a modified Hubbard Hamiltonian to describe the system dynamics and show that it reproduces all experimental observations.
130 - Zhi-Hai Liu , Rui Li 2018
We study the impacts of the magnetic field direction on the spin-manipulation and the spin-relaxation in a one-dimensional quantum dot with strong spin-orbit coupling. The energy spectrum and the corresponding eigenfunctions in the quantum dot are ob tained exactly. We find that no matter how large the spin-orbit coupling is, the electric-dipole spin transition rate as a function of the magnetic field direction always has a $pi$ periodicity. However, the phonon-induced spin relaxation rate as a function of the magnetic field direction has a $pi$ periodicity only in the weak spin-orbit coupling regime, and the periodicity is prolonged to $2pi$ in the strong spin-orbit coupling regime.
98 - Zhi-Hai Liu , Rui Li , Xuedong Hu 2018
We study the electric-dipole transitions for a single electron in a double quantum dot located in a semiconductor nanowire. Enabled by spin-orbit coupling (SOC), electric-dipole spin resonance (EDSR) for such an electron can be generated via two mech anisms: the SOC-induced intradot pseudospin states mixing and the interdot spin-flipped tunneling. The EDSR frequency and strength are determined by these mechanisms together. For both mechanisms the electric-dipole transition rates are strongly dependent on the external magnetic field. Their competition can be revealed by increasing the magnetic field and/or the interdot distance for the double dot. To clarify whether the strong SOC significantly impact the electron state coherence, we also calculate relaxations from excited levels via phonon emission. We show that spin-flip relaxations can be effectively suppressed by the phonon bottleneck effect even at relatively low magnetic fields because of the very large $g$-factor of strong SOC materials such as InSb.
We report a method to derive the potential barrier profile shape in a dynamic quantum dot and show the loading statistics, and hence accuracy of electron transfer, depend significantly on the shape of the barrier. This method takes a further step tow ards tunable barrier shapes, which would greatly increase the accuracy of single electron sources, allowing the single electron current to be useful for quantum sensing, quantum information and metrology. We apply our method to the case of a tunable-barrier single-electron pump, an exemplary device that shows promise as a source of hot single electron wavepackets.
We report the discovery of electric-field-induced transition from a topologically trivial to a topologically nontrivial band structure in an atomically sharp heterostructure of bilayer graphene (BLG) and single-layer WSe2 per the theoretical predicti ons of Gmitra and Fabian [Phys. Rev. Lett. 119, 146401 (2017)]. Through detailed studies of the quantum correction to the conductance in the BLG, we establish that the band-structure evolution arises from an interplay between proximity-induced strong spin-orbit interaction (SOI) and the layer polarizability in BLG. The low-energy carriers in the BLG experience an effective valley Zeeman SOI that is completely gate tunable to the extent that it can be switched on or off by applying a transverse displacement field or can be controllably transferred between the valence and the conduction band. We demonstrate that this results in the evolution from weak localization to weak antilocalization at a constant electronic density as the net displacement field is tuned from a positive to a negative value with a concomitant SOI-induced splitting of the low-energy bands of the BLG near the K (K) valley, which is a unique signature of the theoretically predicted spin-orbit valve effect. Our analysis shows that quantum correction to the Drude conductance in Dirac materials with strong induced SOI can only be explained satisfactorily by a theory that accounts for the SOI-induced spin splitting of the BLG low-energy bands. Our results demonstrate the potential for achieving highly tunable devices based on the valley Zeeman effect in dual-gated two-dimensional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا