ترغب بنشر مسار تعليمي؟ اضغط هنا

Dipole and quadrupole moments of $^{73-78}$Cu as a test of the robustness of the $Z=28$ shell closure near $^{78}$Ni

105   0   0.0 ( 0 )
 نشر من قبل Ruben de Groote
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Nuclear spins and precise values of the magnetic dipole and electric quadrupole moments of the ground-states of neutron-rich $^{76-78}$Cu isotopes were measured using the Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN. The nuclear moments of the less exotic $^{73,75}$Cu isotopes were re-measured with similar precision, yielding values that are consistent with earlier measurements. The moments of the odd-odd isotopes, and $^{78}_{29}$Cu ($N=49$) in particular, are used to investigate excitations of the assumed doubly-magic $^{78}$Ni core through comparisons with large-scale shell-model calculations. Despite the narrowing of the $Z=28$ shell gap between $Nsim45$ and $N=50$, the magicity of $Z=28$ and $N=50$ is restored towards $^{78}$Ni. This is due to weakened dynamical correlations, as clearly probed by the present moment measurements.



قيم البحث

اقرأ أيضاً

Atomic masses of the neutron-rich isotopes $^{76-80}$Zn, $^{78-83}$Ga, $^{80-85}Ge, $^{81-87}$As and $^{84-89}$Se have been measured with high precision using the Penning trap mass spectrometer JYFLTRAP at the IGISOL facility. The masses of $^{82,83} $Ga, $^{83-85}$Ge, $^{84-87}$As and $^{89}$Se were measured for the first time. These new data represent a major improvement in the knowledge of the masses in this neutron-rich region. Two-neutron separation energies provide evidence for the reduction of the N=50 shell gap energy towards germanium Z=32 and a subsequent increase at gallium (Z=31). The data are compared with a number of theoretical models. An indication of the persistent rigidity of the shell gap towards nickel (Z=28) is obtained.
Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and n eutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predicted by ab initio calculations based on chiral effective field theory interactions and the quasi-particle random-phase approximation. However, our results also provide the first indication of the breakdown of the neutron magic number 50 and proton magic number 28 beyond this stronghold, caused by a competing deformed structure. State-of-the-art phenomenological shell-model calculations reproduce this shape coexistence, predicting further a rapid transition from spherical to deformed ground states with $^{78}$Ni as turning point.
139 - O. Sorlin 2012
The evolution of the N=28 shell closure is investigated far from stability. Using the latest results obtained from various experimental techniques, we discuss the main properties of the N=28 isotones, as well as those of the N=27 and N=29 isotones. E xperimental results are confronted to various theoretical predictions. These studies pinpoint the effects of several terms of the nucleon-nucleon interaction, such as the central, the spin-orbit, the tensor and the three-body force components, to account for the modification of the N=28 shell gap and spin-orbit splittings. Analogies between the evolution of the N=28 shell closure and other magic numbers originating from the spin-orbit interaction are proposed (N=14,50, 82 and 90). More generally, questions related to the evolution of nuclear forces towards the drip-line, in bubble nuclei, and for nuclei involved in the r-process nucleosynthesis are proposed and discussed.
The single-particle structure of the $N=27$ isotones provides insights into the shell evolution of neutron-rich nuclei from the doubly-magic $^{48}$Ca toward the drip line. $^{43}$S was studied employing the one-neutron knockout reaction from a radio active $^{44}$S beam. Using a combination of prompt and delayed $gamma$-ray spectroscopy the level structure of $^{43}$S was clarified. Momentum distributions were analyzed and allowed for spin and parity assignments. The deduced spectroscopic factors show that the $^{44}$S ground-state configuration has a strong intruder component. The results were confronted with shell model calculations using two effective interactions. General agreement was found between the calculations, but strong population of states originating from the removal of neutrons from the $2p_{3/2}$ orbital in the experiment indicates that the breakdown of the $N=28$ magic number is more rapid than the theoretical calculations suggest.
101 - G. Hagen , G. R. Jansen , 2016
Doubly magic nuclei have a simple structure and are the cornerstones for entire regions of the nuclear chart. Theoretical insights into the supposedly doubly magic $^{78}$Ni and its neighbors are challenging because of the extreme neutron-to-proton r atio and the proximity of the continuum. We predict the $J^pi=2_1^+$ state in $^{78}$Ni from a correlation with the $J^pi=2_1^+$ state in $^{48}$Ca using chiral nucleon-nucleon and three-nucleon interactions. Our results confirm that $^{78}$Ni is doubly magic, and the predicted low-lying states of $^{79,80}$Ni open the way for shell-model studies of many more rare isotopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا