ﻻ يوجد ملخص باللغة العربية
Observables which distinguish boosted topologies from QCD jets are playing an increasingly important role at the Large Hadron Collider (LHC). These observables are often used in conjunction with jet grooming algorithms, which reduce contamination from both theoretical and experimental sources. In this paper we derive factorization formulae for groomed multi-prong substructure observables, focusing in particular on the groomed $D_2$ observable, which is used to identify boosted hadronic decays of electroweak bosons at the LHC. Our factorization formulae allow systematically improvable calculations of the perturbative $D_2$ distribution and the resummation of logarithmically enhanced terms in all regions of phase space using renormalization group evolution. They include a novel factorization for the production of a soft subjet in the presence of a grooming algorithm, in which clustering effects enter directly into the hard matching. We use these factorization formulae to draw robust conclusions of experimental relevance regarding the universality of the $D_2$ distribution in both $e^+e^-$ and $pp$ collisions. In particular, we show that the only process dependence is carried by the relative quark vs. gluon jet fraction in the sample, no non-global logarithms from event-wide correlations are present in the distribution, hadronization corrections are controlled by the perturbative mass of the jet, and all global color correlations are completely removed by grooming, making groomed $D_2$ a theoretically clean QCD observable even in the LHC environment. We compute all ingredients to one-loop accuracy, and present numerical results at next-to-leading logarithmic accuracy for $e^+e^-$ collisions, comparing with parton shower Monte Carlo simulations. Results for $pp$ collisions, as relevant for phenomenology at the LHC, are presented in a companion paper.
Classification of jets with deep learning has gained significant attention in recent times. However, the performance of deep neural networks is often achieved at the cost of interpretability. Here we propose an interpretable network trained on the je
We review a recently proposed phenomenological framework to establish the notions of QCD factorization and universality of jet cross sections in the heavy-ion environment. First results of a global analysis of the nuclear modification factor of inclu
We present the transverse momentum spectrum of groomed jets in di-jet events for $e^+e^-$ collisions and semi-inclusive deep inelastic scattering (SIDIS). The jets are groomed using a soft-drop grooming algorithm which helps in mitigating effects of
Recently the LHCb collaboration has measured both longitudinal and transverse momentum distribution of hadrons produced inside $Z$-tagged jets in proton-proton collisions at the Large Hadron Collider. These distributions are commonly referred to as j
We study a transverse momentum dependent (TMD) factorization framework for the processes of di-jet and heavy meson pair production in deep-inelastic-scattering in an electron-proton collider, considering the measurement of the transverse momentum imb