ﻻ يوجد ملخص باللغة العربية
In three-dimensional ideal magnetohydrodynamics, closed flux surfaces cannot maintain both rational rotational-transform and pressure gradients, as these features together produce unphysical, infinite currents. A proposed set of equilibria nullifies these currents by flattening the pressure on sufficiently wide intervals around each rational surface. Such rational surfaces exist at every scale, which characterizes the pressure profile as self-similar and thus fractal. The pressure profile is approximated numerically by considering a finite number of rational regions and analyzed mathematically by classifying the irrational numbers that support gradients into subsets. Applying these results to a given rotational-transform profile in cylindrical geometry, we find magnetic field and current density profiles compatible with the fractal pressure.
In ideal MHD, the magnetic flux is advected by the plasma motion, freezing flux-surfaces into the flow. An MHD equilibrium is reached when the flow relaxes and force balance is achieved. We ask what classes of MHD equilibria can be accessed from a gi
Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have stud
Magnetic reconnection may be the fundamental process allowing energy stored in magnetic fields to be released abruptly, solar flares and coronal mass ejection (CME) being archetypal natural plasma examples. Magnetic reconnection is much too slow a pr
A new force balance model for the EFIT magnetohydrodynamic equilibrium technique for tokamaks is presented which includes the full toroidal flow and anisotropy changes to the Grad-Shafranov equation. The free functions are poloidal flux functions and
The Stepped Pressure Equilibrium Code (SPEC) [Hudson et al., Phys. Plasmas 19, 112502 (2012)] has been successful in the construction of equilibria in 3D configurations that contain a mixture of flux surfaces, islands and chaotic magnetic field lines