ﻻ يوجد ملخص باللغة العربية
Word embeddings are a powerful approach for analyzing language, and exponential family embeddings (EFE) extend them to other types of data. Here we develop structured exponential family embeddings (S-EFE), a method for discovering embeddings that vary across related groups of data. We study how the word usage of U.S. Congressional speeches varies across states and party affiliation, how words are used differently across sections of the ArXiv, and how the co-purchase patterns of groceries can vary across seasons. Key to the success of our method is that the groups share statistical information. We develop two sharing strategies: hierarchical modeling and amortization. We demonstrate the benefits of this approach in empirical studies of speeches, abstracts, and shopping baskets. We show how S-EFE enables group-specific interpretation of word usage, and outperforms EFE in predicting held-out data.
We address the problem of speech act recognition (SAR) in asynchronous conversations (forums, emails). Unlike synchronous conversations (e.g., meetings, phone), asynchronous domains lack large labeled datasets to train an effective SAR model. In this
We propose Diverse Embedding Neural Network (DENN), a novel architecture for language models (LMs). A DENNLM projects the input word history vector onto multiple diverse low-dimensional sub-spaces instead of a single higher-dimensional sub-space as i
Pruning is an effective method to reduce the memory footprint and computational cost associated with large natural language processing models. However, current approaches either only explore head pruning, which has a limited pruning ratio, or only fo
Text style transfer aims to modify the style of a sentence while keeping its content unchanged. Recent style transfer systems often fail to faithfully preserve the content after changing the style. This paper proposes a structured content preserving
SkipGram word embedding models with negative sampling, or SGN in short, is an elegant family of word embedding models. In this paper, we formulate a framework for word embedding, referred to as Word-Context Classification (WCC), that generalizes SGN