ترغب بنشر مسار تعليمي؟ اضغط هنا

Jastrow-like ground states for quantum many-body potentials with near-neighbors interactions

103   0   0.0 ( 0 )
 نشر من قبل Artemio Gonzalez-Lopez
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We completely solve the problem of classifying all one-dimensional quantum potentials with nearest- and next-to-nearest-neighbors interactions whose ground state is Jastrow-like, i.e., of Jastrow type but depending only on differences of consecutive particles. In particular, we show that these models must necessarily contain a three-body interaction term, as was the case with all previously known examples. We discuss several particular instances of the general solution, including a new hyperbolic potential and a model with elliptic interactions which reduces to the known rational and trigonometric ones in appropriate limits.



قيم البحث

اقرأ أيضاً

As a straightforward generalization and extension of our previous paper, J. Phys. A50 (2017) 215201 we study aspects of the quantum and classical dynamics of a $3$-body system with equal masses, each body with $d$ degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. It corresponds to a three-dimensional quantum particle moving in a curved space with special $d$-dimension-independent metric in a certain $d$-dependent singular potential, while at $d=1$ it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is $d$-independent, it has a hidden $sl(4,R)$ Lie (Poisson) algebra structure, alternatively, the hidden algebra $h^{(3)}$ typical for the $H_3$ Calogero model as in the $d=3$ case. We find an exactly-solvable three-body $S^3$-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly-solvable three-body sextic polynomial type potential with singular terms. For both models an extra first order integral exists. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to $d>1$ leads to two primitive quasi-exactly-solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.
We propose an index for pairs of a unitary map and a clustering state on many-body quantum systems. We require the map to conserve an integer-valued charge and to leave the state, e.g. a gapped ground state, invariant. This index is integer-valued an d stable under perturbations. In general, the index measures the charge transport across a fiducial line. We show that it reduces to (i) an index of projections in the case of non-interacting fermions, (ii) the charge density for translational invariant systems, and (iii) the quantum Hall conductance in the two-dimensional setting without any additional symmetry. Example (ii) recovers the Lieb-Schultz-Mattis theorem, and (iii) provides a new and short proof of quantization of Hall conductance in interacting many-body systems.
Quantum chaotic interacting $N$-particle systems are assumed to show fast and irreversible spreading of quantum information on short (Ehrenfest) time scales $sim!log N$. Here we show that, near criticality, certain many-body systems exhibit fast init ial scrambling, followed subsequently by oscillatory behavior between reentrant localization and delocalization of information in Hilbert space. We consider both integrable and nonintegrable quantum critical bosonic systems with attractive contact interaction that exhibit locally unstable dynamics in the corresponding many-body phase space of the large-$N$ limit. Semiclassical quantization of the latter accounts for many-body correlations in excellent agreement with simulations. Most notably, it predicts an asymptotically constant local level spacing $hbar/tau$, again given by $tau! sim! log N$. This unique timescale governs the long-time behavior of out-of-time-order correlators that feature quasi-periodic recurrences indicating reversibility.
We study the many body quantum evolution of bosonic systems in the mean field limit. The dynamics is known to be well approximated by the Hartree equation. So far, the available results have the form of a law of large numbers. In this paper we go one step further and we show that the fluctuations around the Hartree evolution satisfy a central limit theorem. Interestingly, the variance of the limiting Gaussian distribution is determined by a time-dependent Bogoliubov transformation describing the dynamics of initial coherent states in a Fock space representation of the system.
We consider the many-body quantum evolution of a factorized initial data, in the mean-field regime. We show that fluctuations around the limiting Hartree dynamics satisfy large deviation estimates, that are consistent with central limit theorems that have been established in the last years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا