ﻻ يوجد ملخص باللغة العربية
We consider the Rosenzweig-Porter model $H = V + sqrt{T}, Phi$, where $V$ is a $N times N$ diagonal matrix, $Phi$ is drawn from the $N times N$ Gaussian Orthogonal Ensemble, and $N^{-1} ll T ll 1$. We prove that the eigenfunctions of $H$ are typically supported in a set of approximately $NT$ sites, thereby confirming the existence of a previously conjectured non-ergodic delocalized phase. Our proof is based on martingale estimates along the characteristic curves of the stochastic advection equation satisfied by the local resolvent of the Brownian motion representation of $H$.
This paper studies the delocalized regime of an ultrametric random operator whose independent entries have variances decaying in a suitable hierarchical metric on $mathbb{N}$. When the decay-rate of the off-diagonal variances is sufficiently slow, we
We study analytically and numerically the dynamics of the generalized Rosenzweig-Porter model, which is known to possess three distinct phases: ergodic, multifractal and localized phases. Our focus is on the survival probability $R(t)$, the probabili
The Holstein model describes the motion of a tight-binding tracer particle interacting with a field of quantum harmonic oscillators. We consider this model with an on-site random potential. Provided the hopping amplitude for the particle is small, we
Non-Hermitian effects could trigger spectrum, localization and topological phase transitions in quasiperiodic lattices. We propose a non-Hermitian extension of the Maryland model, which forms a paradigm in the study of localization and quantum chaos
We apply Feshbach-Krein-Schur renormalization techniques in the hierarchical Anderson model to establish a criterion on the single-site distribution which ensures exponential dynamical localization as well as positive inverse participation ratios and