ﻻ يوجد ملخص باللغة العربية
Plastic deformation in polycrystals is governed by the interplay between intra-granular slip and grain boundary-mediated plasticity. However, while the role played by bulk dislocations is relatively well-understood, the contribution of grain boundaries (GBs) has only recently begun to be studied. GB plasticity is known to play a key role along with bulk plasticity under a wide range of conditions, such as dynamic recovery, superplasticity, severe plastic deformation , etc., and developing models capable of simultaneously capturing GB and bulk plasticity has become a topic of high relevance. In this paper we develop a thermodynamically-consistent polycrystal plasticity model capable of simulating a variety of grain boundary-mediated plastic processes in conjunction with bulk dislocation slip. The model starts from the description of a single crystal and creates lattice strain-free polycrystalline configurations by using a specially-designed multiplicative decomposition developed by the authors. This leads to the introduction of a particular class of geometrically necessary dislocations (GND) that define fundamental GB features such as misorientation and inclination. The evolution of the system is based on an energy functional that uses a non-standard function of the GND tensor to account for the grain boundary energy, as well as for the standard elastic energy. Our implementation builds on smooth descriptions of GBs inspired on diffuse-interface models of grain evolution for numerical convenience. We demonstrate the generality and potential of the methodology by simulating a wide variety of phenomena such as shear-induced GB sliding, coupled GB motion, curvature-induced grain rotation and shrinkage, and polygonization via dislocation sub-grain formation.
The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is mo
A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary
We present a thermodynamic description of crystal plasticity. Our formulation is based on the Langer-Bouchbinder-Lookman thermodynamic dislocation theory (TDT), which asserts the fundamental importance of an effective temperature that describes the s
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic com
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to pred