ﻻ يوجد ملخص باللغة العربية
We present the first HI spectral line images of the nearby, star-forming dwarf galaxies UGC11411 and UGC 8245, acquired as part of the Observing for University Classes program with the Karl G. Jansky Very Large Array (VLA). These low-resolution images localize the HI gas and reveal the bulk kinematics of each system. Comparing with HST broadband and ground-based H{alpha} imaging, we find that the ongoing star formation in each galaxy is associated with the highest HI mass surface density regions. UGC 8245 has a much lower current star formation rate than UGC 11411, which harbors very high surface brightness H{alpha} emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST. We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the HI and stellar masses of the sources are similar. We show that UGC8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.
In this paper, we introduce the Local Volume TiNy Titans sample (LV-TNT), which is a part of a larger body of work on interacting dwarf galaxies: TNT (Stierwalt et al. 2015). This LV-TNT sample consists of 10 dwarf galaxy pairs in the Local Universe
Spatially resolved HI studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future HI surveys are unlikely to improve
The comparison of chemical abundances in the neutral gas of galaxies to photospheric abundances of old and young stars, ionized gas abundances, and abundances in galactic halos can trace the chemical enrichment of the universe through cosmic times. I
The radial spatial distribution of low-mass satellites around a Milky Way (MW)-like host is an important benchmark for simulations of small-scale structure. The distribution is sensitive to the disruption of subhalos by the central disk and can indic
Here I briefly highlight our studies of the gas content, kinematics and star formation in nearby dwarf galaxies (D < 10 Mpc) based on the `Local Volume HI Survey (LVHIS, Koribalski et al. 2018), which was conducted with the Australia Telescope Compac