ﻻ يوجد ملخص باللغة العربية
In accretion disks with large-scale ordered magnetic fields, the magnetorotational instability (MRI) is marginally suppressed, so other processes may drive angular momentum transport leading to accretion. Accretion could then be driven by large-scale magnetic fields via magnetic braking, but large-scale magnetic flux can build-up onto the black hole and within the disk leading to a magnetically-arrested disk (MAD). Such a MAD state is unstable to the magnetic Rayleigh-Taylor (RT) instability, which itself leads to vigorous turbulence and the emergence of low-density highly-magnetized bubbles. This instability was studied in a thin (ratio of half-height H to radius R, $H/R approx 0.1$) MAD simulation, where it has a more dramatic effect on the dynamics of the disk than for thicker disks. We find that the low-density bubbles created by the magnetic RT instability decrease the stress (leading to angular momentum transport) in the disk rather than increasing magnetic torques. Indeed, we find that the dominant component of the stress is due to turbulent magnetic fields, despite the suppression of the axisymmetric MRI and the dominant presence of large-scale magnetic fields. This suggests that the magnetic RT instability plays a significant role in driving angular momentum transport in MADs.
The radiative and jet efficiencies of thin magnetized accretion disks around black holes (BHs) are affected by BH spin and the presence of a magnetic field that, when strong, could lead to large deviations from Novikov-Thorne (NT) thin disk theory. T
The exact time-dependent solution is obtained for a magnetic field growth during a spherically symmetric accretion into a black hole (BH) with a Schwarzschild metric. Magnetic field is increasing with time, changing from the initially uniform into a
The classical, relativistic thin-disk theory of Novikov and Thorne (NT) predicts a maximum accretion efficiency of 40% for an optically thick, radiatively efficient accretion disk around a maximally spinning black hole (BH). However, when a strong ma
The radiative efficiency of super-Eddington accreting black holes (BHs) is explored for magnetically-arrested disks (MADs), where magnetic flux builds-up to saturation near the BH. Our three-dimensional general relativistic radiation magnetohydrodyna
We propose a novel interpretation that gamma-rays from nearby radio galaxies are hadronic emission from magnetically arrested disks (MADs) around central black holes (BHs). The magnetic energy in MADs is higher than the thermal energy of the accretin