ﻻ يوجد ملخص باللغة العربية
Quantum light sources are characterized by their distinctive statistical distribution of photons. For example, single photons and correlated photon pairs exhibit antibunching and reduced variance in the number distribution that is impossible with classical light. Most common realizations of quantum light sources have relied on spontaneous parametric processes such as down-conversion (SPDC) and four-wave mixing (SFWM). These processes are mediated by vacuum fluctuations of the electromagnetic field. Therefore, by manipulating the electromagnetic mode structure, for example, using nanophotonic systems, one can engineer the spectrum of generated photons. However, such manipulations are susceptible to fabrication disorders which are ubiquitous in nanophotonic systems and lead to device-to-device variations in the spectrum of generated photons. Here, we demonstrate topologically robust mode engineering of the electromagnetic vacuum fluctuations and implement a nanophotonic quantum light source where the spectrum of generated photons is robust against fabrication disorders. Specifically, we use the topological edge states to achieve an enhanced and robust generation of correlated photon pairs using SFWM and show that they outperform their topologically-trivial counterparts. We demonstrate the non-classical nature of our source using conditional antibunching of photons which confirms that we have realized a robust source of heralded single photons. Such topological effects, which are unique to bosonic systems, could pave the way for the development of robust quantum photonic devices.
Sources of quantum light, in particular correlated photon pairs that are indistinguishable in all degrees of freedom, are the fundamental resource that enables continuous-variable quantum computation and paradigms such as Gaussian boson sampling. Nan
Topological photonic structures exhibit chiral edge states that are robust to disorder and sharp bends. When coupled to quantum emitters, these edge states generate directional light emission that enables unprecedented control of interactions between
Distinguishing between strings of data or waveforms is at the core of multiple applications in information technologies. In a quantum language the task is to design protocols to differentiate quantum states. Quantum-based technologies promises to go
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena. Demonstrations of such processes have, however, been limited to probabilistic sources, for instance, spontaneous parametric down-conversion or
Vacuum ultraviolet (VUV) light at 118 nm has been shown to be a powerful tool to ionize molecules for various gas-phase chemical studies. A convenient table top source of 118 nm light can be produced by frequency tripling 355 nm light from a Nd:YAG l