ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Evidence of Spontaneous Abrikosov Vortex State in Ferromagnetic Superconductor EuFe$_2$(As$_{1-x}$P$_x$)$_2$ with $x=0.21$

68   0   0.0 ( 0 )
 نشر من قبل Ivan Veshchunov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using low-temperature Magnetic Force Microscopy (MFM) we provide direct experimental evidence for spontaneous vortex phase (SVP) formation in EuFe$_2$(As$_{0.79}$P$_{0.21}$)$_2$ single crystal with the superconducting $T^{rm 0}_{rm SC}=23.6$~K and ferromagnetic $T_{rm FM}sim17.7$~K transition temperatures. Spontaneous vortex-antivortex (V-AV) pairs are imaged in the vicinity of $T_{rm FM}$. Also, upon cooling cycle near $T_{rm FM}$ we observe the first-order transition from the short period domain structure, which appears in the Meissner state, into the long period domain structure with spontaneous vortices. It is the first experimental observation of this scenario in the ferromagnetic superconductors. Low-temperature phase is characterized by much larger domains in V-AV state and peculiar branched striped structures at the surface, which are typical for uniaxial ferromagnets with perpendicular magnetic anisotropy (PMA). The domain wall parameters at various temperatures are estimated.



قيم البحث

اقرأ أيضاً

Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, $textrm{EuFe}_{2}(textrm{As}_{1-x}textrm{P}_{x})_{2}$ (x = 0.23), were measured in pristine state and after different do ses of 2.5 MeV electron or 3.5 MeV proton irradiation. The superconducting transition temperature, $T_{c}(H)$, shows an extraordinarily large decrease. It starts at $T_{c}(H=0)approx24:textrm{K}$ in the pristine sample for both AC and DC measurements, but moves to almost half of that value after moderate irradiation dose. Our results suggest that in $textrm{EuFe}_{2}(textrm{As}_{1-x}textrm{P}_{x})_{2}$ superconductivity is affected by local-moment ferromagnetism mostly via the spontaneous internal magnetic fields induced by the FM subsystem. Another mechanism is revealed upon irradiation where magnetic defects created in ordered $text{Eu}^{2+}$ lattice act as efficient pairbreakers leading to a significant $T_{c}$ reduction upon irradiation compared to other 122 compounds. On the other hand, the exchange interactions seem to be weakly screened by the superconducting phase leading to a modest increase of $T_{m}$ (less than 1 K) after the irradiation drives $T_{c}$ to below $T_{m}$. The results suggest that FM and SC phases coexist microscopically in the same volume.
358 - M. Yi , A. Frano , D. H. Lu 2018
We report an angle-resolved photoemission spectroscopy study of the iron-based superconductor family, Ba$_{1-x}$Na$_x$Fe$_2$As$_2$. This system harbors the recently discovered double-Q magnetic order appearing in a reentrant C$_4$ phase deep within t he underdoped regime of the phase diagram that is otherwise dominated by the coupled nematic phase and collinear antiferromagnetic order. From a detailed temperature-dependence study, we identify the electronic response to the nematic phase in an orbital-dependent band shift that strictly follows the rotational symmetry of the lattice and disappears when the system restores C$_4$ symmetry in the low temperature phase. In addition, we report the observation of a distinct electronic reconstruction that cannot be explained by the known electronic orders in the system.
95 - P. Richard , C. Capan , J. Ma 2013
We used angle-resolved photoemission spectroscopy to investigate the electronic structure of EuFe$_2$As$_2$, EuFe$_2$As$_{1.4}$P$_{0.6}$ and EuFe$_2$P$_2$. We observed doubled core level peaks associated to the pnictide atoms, which are related to a surface state. Nevertheless, strong electronic dispersion along the $c$ axis, especially pronounced in EuFe$_2$P$_2$, is observed for at less one band, thus indicated that the Fe states, albeit probably affected at the surface, do not form pure two-dimensional surface states. However, this latter material shows reduced spectral weight near the Fermi level as compared to EuFe$_2$As$_2$ and EuFe$_2$As$_{1.4}$P$_{0.6}$. An anomalous jump is also found in the electronic states associated with the Eu$^{2+}$ $f$ states in EuFe$_2$P$_2$.
We investigate the in-plane anisotropy of Fe 3d orbitals occurring in a wide temperature and composition range of BaFe2(As1-xPx)2 system. By employing the angle-resolved photoemission spectroscopy, the lifting of degeneracy in dxz and dyz orbitals at the Brillouin zone corners can be obtained as a measure of the orbital anisotropy. In the underdoped regime, it starts to evolve on cooling from high temperatures above both antiferromagnetic and orthorhombic transitions. With increasing x, it well survives into the superconducting regime, but gradually gets suppressed and finally disappears around the non-superconducting transition (x = 0.7). The observed spontaneous in-plane orbital anisotropy, possibly coupled with anisotropic lattice and magnetic fluctuations, implies the rotational-symmetry broken electronic state working as the stage for the superconductivity in BaFe2(As1-xPx)2.
In many classes of unconventional superconductors, the question of whether the superconductivity is enhanced by the quantum-critical fluctuations on the verge of an ordered phase remains elusive. One of the most direct ways of addressing this issue i s to investigate how the superconducting dome traces a shift of the ordered phase. Here, we study how the phase diagram of the iron-based superconductor BaFe$_2$(As$_{1-x}$P$_x$)$_2$ changes with disorder via electron irradiation, which keeps the carrier concentrations intact. With increasing disorder, we find that the magneto-structural transition is suppressed, indicating that the critical concentration is shifted to the lower side. Although the superconducting transition temperature $T_c$ is depressed at high concentrations ($xgtrsim$0.28), it shows an initial increase at lower $x$. This implies that the superconducting dome tracks the shift of the antiferromagnetic phase, supporting the view of the crucial role played by quantum-critical fluctuations in enhancing superconductivity in this iron-based high-$T_c$ family.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا