ﻻ يوجد ملخص باللغة العربية
We report development and microwave characterization of rf SQUID (Superconducting QUantum Interference Device) qubits, consisting of an aluminium-based Josephson junction embedded in a superconducting loop patterned from a thin film of TiN with high kinetic inductance. Here we demonstrate that the systems can offer small physical size, high anharmonicity, and small scatter of device parameters. The hybrid devices can be utilized as tools to shed further light onto the origin of film dissipation and decoherence in phase-slip nanowire qubits, patterned entirely from disordered superconducting films.
We report a low temperature measurement technique and magnetization data of a quantum molecular spin, by implementing an on-chip SQUID technique. This technique enables the SQUID magnetometery in high magnetic fields, up to 7 Tesla. The main challeng
Inductance is a key parameter when optimizing the performance of superconducting quantum interference device (SQUID) magnetometers made from the high temperature superconductor YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) because lower SQUID inductance $L$ leads to
We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting wea
We study a novel configuration for displacement detection consisting of a nanomechanical resonator coupled to both, a radio frequency superconducting interference device (RF SQUID) and to a superconducting stripline resonator. We employ an adiabatic