ﻻ يوجد ملخص باللغة العربية
Let $f(n,r)$ denote the maximum number of colourings of $A subseteq lbrace 1,ldots,nrbrace$ with $r$ colours such that each colour class is sum-free. Here, a sum is a subset $lbrace x,y,zrbrace$ such that $x+y=z$. We show that $f(n,2) = 2^{lceil n/2rceil}$, and describe the extremal subsets. Further, using linear optimisation, we asymptotically determine the logarithm of $f(n,r)$ for $r leq 5$. Similar results were obtained by H`an and Jimenez in the setting of finite abelian groups.
Let $mathbf{k} := (k_1,dots,k_s)$ be a sequence of natural numbers. For a graph $G$, let $F(G;mathbf{k})$ denote the number of colourings of the edges of $G$ with colours $1,dots,s$ such that, for every $c in {1,dots,s}$, the edges of colour $c$ cont
We study the mixed Ramsey number maxR(n,K_m,K_r), defined as the maximum number of colours in an edge-colouring of the complete graph K_n, such that K_n has no monochromatic complete subgraph on m vertices and no rainbow complete subgraph on r vertic
We show that for any $2$-local colouring of the edges of the balanced complete bipartite graph $K_{n,n}$, its vertices can be covered with at most~$3$ disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced com
We show that in any two-coloring of the positive integers there is a color for which the set of positive integers that can be represented as a sum of distinct elements with this color has upper logarithmic density at least $(2+sqrt{3})/4$ and this is
Hindman proved that, whenever the set $mathbb{N}$ of naturals is finitely colored, there must exist non-constant monochromatic solution of the equation $a+b=cd$. In this paper we extend this result for dense subsemigroups of $((0, infty), +)$ to near zero.