ترغب بنشر مسار تعليمي؟ اضغط هنا

Drought Stress Classification using 3D Plant Models

149   0   0.0 ( 0 )
 نشر من قبل Siddharth Srivastava
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantification of physiological changes in plants can capture different drought mechanisms and assist in selection of tolerant varieties in a high throughput manner. In this context, an accurate 3D model of plant canopy provides a reliable representation for drought stress characterization in contrast to using 2D images. In this paper, we propose a novel end-to-end pipeline including 3D reconstruction, segmentation and feature extraction, leveraging deep neural networks at various stages, for drought stress study. To overcome the high degree of self-similarities and self-occlusions in plant canopy, prior knowledge of leaf shape based on features from deep siamese network are used to construct an accurate 3D model using structure from motion on wheat plants. The drought stress is characterized with a deep network based feature aggregation. We compare the proposed methodology on several descriptors, and show that the network outperforms conventional methods.



قيم البحث

اقرأ أيضاً

Machine vision for plant phenotyping is an emerging research area for producing high throughput in agriculture and crop science applications. Since 2D based approaches have their inherent limitations, 3D plant analysis is becoming state of the art fo r current phenotyping technologies. We present an automated system for analyzing plant growth in indoor conditions. A gantry robot system is used to perform scanning tasks in an automated manner throughout the lifetime of the plant. A 3D laser scanner mounted as the robots payload captures the surface point cloud data of the plant from multiple views. The plant is monitored from the vegetative to reproductive stages in light/dark cycles inside a controllable growth chamber. An efficient 3D reconstruction algorithm is used, by which multiple scans are aligned together to obtain a 3D mesh of the plant, followed by surface area and volume computations. The whole system, including the programmable growth chamber, robot, scanner, data transfer and analysis is fully automated in such a way that a naive user can, in theory, start the system with a mouse click and get back the growth analysis results at the end of the lifetime of the plant with no intermediate intervention. As evidence of its functionality, we show and analyze quantitative results of the rhythmic growth patterns of the dicot Arabidopsis thaliana(L.), and the monocot barley (Hordeum vulgare L.) plants under their diurnal light/dark cycles.
The paper presents a dictionary integration algorithm using 3D morphable face models (3DMM) for pose-invariant collaborative-representation-based face classification. To this end, we first fit a 3DMM to the 2D face images of a dictionary to reconstru ct the 3D shape and texture of each image. The 3D faces are used to render a number of virtual 2D face images with arbitrary pose variations to augment the training data, by merging the original and rendered virtual samples to create an extended dictionary. Second, to reduce the information redundancy of the extended dictionary and improve the sparsity of reconstruction coefficient vectors using collaborative-representation-based classification (CRC), we exploit an on-line elimination scheme to optimise the extended dictionary by identifying the most representative training samples for a given query. The final goal is to perform pose-invariant face classification using the proposed dictionary integration method and the on-line pruning strategy under the CRC framework. Experimental results obtained for a set of well-known face datasets demonstrate the merits of the proposed method, especially its robustness to pose variations.
Automatic plant classification is a challenging problem due to the wide biodiversity of the existing plant species in a fine-grained scenario. Powerful deep learning architectures have been used to improve the classification performance in such a fin e-grained problem, but usually building models that are highly dependent on a large training dataset and which are not scalable. In this paper, we propose a novel method based on a two-view leaf image representation and a hierarchical classification strategy for fine-grained recognition of plant species. It uses the botanical taxonomy as a basis for a coarse-to-fine strategy applied to identify the plant genus and species. The two-view representation provides complementary global and local features of leaf images. A deep metric based on Siamese convolutional neural networks is used to reduce the dependence on a large number of training samples and make the method scalable to new plant species. The experimental results on two challenging fine-grained datasets of leaf images (i.e. LifeCLEF 2015 and LeafSnap) have shown the effectiveness of the proposed method, which achieved recognition accuracy of 0.87 and 0.96 respectively.
Convolutional Neural Networks (CNNs) traditionally encode translation equivariance via the convolution operation. Generalization to other transformations has recently received attraction to encode the knowledge of the data geometry in group convoluti on operations. Equivariance to rotation is particularly important for 3D image analysis due to the large diversity of possible pattern orientations. 3D texture is a particularly important cue for the analysis of medical images such as CT and MRI scans as it describes different types of tissues and lesions. In this paper, we evaluate the use of 3D group equivariant CNNs accounting for the simplified group of right-angle rotations to classify 3D synthetic textures from a publicly available dataset. The results validate the importance of rotation equivariance in a controlled setup and yet motivate the use of a finer coverage of orientations in order to obtain equivariance to realistic rotations present in 3D textures.
Knowing a biomolecules structure is inherently linked to and a prerequisite for any detailed understanding of its function. Significant effort has gone into developing technologies for structural characterization. These technologies do not directly p rovide 3D structures; instead they typically yield noisy and erroneous distance information between specific entities such as atoms or residues, which have to be translated into consistent 3D models. Here we present an approach for this translation process based on maxent-stress optimization. Our new approach extends the original graph drawing method for the new applications specifics by introducing additional constraints and confidence values as well as algorithmic components. Extensive experiments demonstrate that our approach infers structural models (i. e., sensible 3D coordinates for the molecules atoms) that correspond well to the distance information, can handle noisy and error-prone data, and is considerably faster than established tools. Our results promise to allow domain scientists nearly-interactive structural modeling based on distance constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا