ﻻ يوجد ملخص باللغة العربية
We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the free-standing silicene with the line defect originating from the reversed buckled phases.
We present a fast and stable numerical technique to obtain the self-energy terms of electrodes for first-principles electron-transport calculations. Although first-principles calculations based on the real-space finite-difference method are advantage
We present a method to efficiently combine the computation of electron-electron and electron-phonon self-energies, which enables the evaluation of electron-phonon coupling at the $G_0W_0$ level of theory for systems with hundreds of atoms. In additio
Organic molecular crystals are expected to feature appreciable electron-phonon interactions that influence their electronic properties at zero and finite temperature. In this work, we report first-principles calculations and an analysis of the electr
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in the one-dimensional molecular chain. Our technique is based on the Feynmans path integral approach. Analytical expressions for
We analyze a data set comprising 370 GW band structures composed of 61716 quasiparticle (QP) energies of two-dimensional (2D) materials spanning 14 crystal structures and 52 elements. The data results from PAW plane wave based one-shot G$_0$W$_0$@PBE