ترغب بنشر مسار تعليمي؟ اضغط هنا

Frustrated spin order and stripe fluctuations in FeSe

231   0   0.0 ( 0 )
 نشر من قبل Andreas Baum
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge and spin dynamics of the structurally simplest iron-based superconductor, FeSe, may hold the key to understanding the physics of high temperature superconductors in general. Unlike the iron pnictides, FeSe lacks long range magnetic order in spite of a similar structural transition around 90,K. Here, we report results of Raman scattering experiments as a function of temperature and polarization and simulations based on exact diagonalization of a frustrated spin model. Both experiment and theory find a persistent low energy peak close to 500cm$^{-1}$ in $B_{1g}$ symmetry, which softens slightly around 100,K, that we assign to spin excitations. By comparing with results from neutron scattering, this study provides evidence for nearly frustrated stripe order in FeSe.



قيم البحث

اقرأ أيضاً

Elucidating the microscopic origin of nematic order in iron-based superconducting materials is important because the interactions that drive nematic order may also mediate the Cooper pairing. Nematic order breaks fourfold rotational symmetry in the i ron plane, which is believed to be driven by either orbital or spin degrees of freedom. However, as the nematic phase often develops at a temperature just above or coincides with a stripe magnetic phase transition, experimentally determining the dominant driving force of nematic order is difficult. Here, we use neutron scattering to study structurally the simplest iron-based superconductor FeSe, which displays a nematic (orthorhombic) phase transition at $T_s=90$ K, but does not order antiferromagnetically. Our data reveal substantial stripe spin fluctuations, which are coupled with orthorhombicity and are enhanced abruptly on cooling to below $T_s$. Moreover, a sharp spin resonance develops in the superconducting state, whose energy (~4 meV) is consistent with an electron boson coupling mode revealed by scanning tunneling spectroscopy, thereby suggesting a spin fluctuation-mediated sign-changing pairing symmetry. By normalizing the dynamic susceptibility into absolute units, we show that the magnetic spectral weight in FeSe is comparable to that of the iron arsenides. Our findings support recent theoretical proposals that both nematicity and superconductivity are driven by spin fluctuations.
140 - M. Pregelj , A. Zorko , O. Zaharko 2015
Motifs of periodic modulations are encountered in a variety of natural systems, where at least two rival states are present. In strongly correlated electron systems such behaviour has typically been associated with competition between short- and long -range interactions, e.g., between exchange and dipole-dipole interactions in the case of ferromagnetic thin films. Here we show that spin-stripe textures may develop also in antiferromagnets, where long-range dipole-dipole magnetic interactions are absent. A comprehensive analysis of magnetic susceptibility, high-field magnetization, specific heat, and neutron diffraction measurements unveils $beta$-TeVO$_4$ as a nearly perfect realization of a frustrated (zigzag) ferromagnetic spin-1/2 chain. Strikingly, a narrow spin stripe phase develops at elevated magnetic fields due to weak frustrated short-range interchain exchange interactions possibly assisted by the symmetry allowed electric polarization. This concept provides an alternative route for the stripe formation in strongly correlated electron systems and may help understanding other widespread, yet still elusive, stripe-related phenomena.
136 - S. Ji , S.-H. Lee , C. Broholm 2009
Using synchrotron X-rays and neutron diffraction we disentangle spin-lattice order in highly frustrated ZnCr$_2$O$_4$ where magnetic chromium ions occupy the vertices of regular tetrahedra. Upon cooling below 12.5 K the quandary of anti-aligning spin s surrounding the triangular faces of tetrahedra is resolved by establishing weak interactions on each triangle through an intricate lattice distortion. The resulting spin order is however, not simply a N{e}el state on strong bonds. A complex co-planar spin structure indicates that antisymmetric and/or further neighbor exchange interactions also play a role as ZnCr$_2$O$_4$ resolves conflicting magnetic interactions.
167 - M. Pregelj , O. Zaharko , M. Herak 2016
We investigate the spin-stripe mechanism responsible for the peculiar nanometer modulation of the incommensurate magnetic order that emerges between the vector-chiral and the spin-density-wave phase in the frustrated zigzag spin-1/2 chain compound $b eta$-TeVO$_4$. A combination of magnetic-torque, neutron-diffraction and spherical-neutron-polarimetry measurements is employed to determine the complex magnetic structures of all three ordered phases. Based on these results, we develop a simple phenomenological model, which exposes the exchange anisotropy as the key ingredient for the spin-stripe formation in frustrated spin systems.
Muon spin rotation (muSR) experiments reveal unconventional spin freezing and dynamics in the two-dimensional (2D) triangular lattice antiferromagnet NiGa2S4. Long-lived disordered Ni-spin freezing (correlation time > 10-6 s at 2 K) sets in below T_f = 8.5 +- 0.5 K with a mean-field-like temperature dependence. The observed exponential temperature dependence of the muon spin relaxation above T_f is strong evidence for 2D critical spin fluctuations. Slow Ni spin fluctuations coexist with quasistatic magnetism at low temperatures but are rapidly suppressed for fields > 10 mT, in marked contrast with the field-independent specific heat. The muSR and bulk susceptibility data indicate a well-defined 2D phase transition at T_f, below which NiGa2S4 is neither a conventional magnet nor a singlet spin liquid.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا