ﻻ يوجد ملخص باللغة العربية
Let $K$ be a simply connected compact Lie group and $T^{ast}(K)$ its cotangent bundle. We consider the problem of quantization commutes with reduction for the adjoint action of $K$ on $T^{ast}(K).$ We quantize both $T^{ast}(K)$ and the reduced phase space using geometric quantization with half-forms. We then construct a geometrically natural map from the space of invariant elements in the quantization of $T^{ast}(K)$ to the quantization of the reduced phase space. We show that this map is a constant multiple of a unitary map.
There is a decomposition of a Lie algebra for open matrix chains akin to the triangular decomposition. We use this decomposition to construct unitary irreducible representations. All multiple meson states can be retrieved this way. Moreover, they are
Using the character expansion method, we generalize several well-known integrals over the unitary group to the case where general complex matrices appear in the integrand. These integrals are of interest in the theory of random matrices and may also find applications in lattice gauge theory.
Using the fact that the algebra M := M_N(C) of NxN complex matrices can be considered as a reduced quantum plane, and that it is a module algebra for a finite dimensional Hopf algebra quotient H of U_q(sl(2)) when q is a root of unity, we reduce this
Lie group method provides an efficient tool to solve a differential equation. This paper suggests a fractional partner for fractional partial differential equations using a fractional characteristic method. A space-time fractional diffusion equation
The concept of duality reflects a link between two seemingly different physical objects. An example in quantum mechanics is a situation where the spectra (or their parts) of two Hamiltonians go into each other under a certain transformation. We term