ﻻ يوجد ملخص باللغة العربية
Non-orthogonal access techniques have recently gained renewed interest in the context of next generation wireless networks. As the relative gain, with respect to traditionally employed orthogonal-access techniques depends on many factors, it is of interest to obtain insights by considering the simplest scenario, the two-user downlink (broadcast) channel where all nodes are equipped with a single antenna. Further, we focus on rate pairs that are in the vicinity of sum-rate optimalilty with respect to the capacity region of the broadcast channel. A simple and explicit characterization of the relative gain of non-orthogonal transmission with respect to orthogonal transmission is obtained under these conditions as an immediate consequence of the capacity regions of the two.
Non-orthogonal multiple access (NOMA) is one of the key techniques to address the high spectral efficiency and massive connectivity requirements for the fifth generation (5G) wireless system. To efficiently realize NOMA, we propose a joint design fra
This paper aims to provide a comprehensive solution for the design, analysis, and optimization of a multiple-antenna non-orthogonal multiple access (NOMA) system for multiuser downlink communication with both time duplex division (TDD) and frequency
Non-orthogonal multiple access (NOMA) is a candidate multiple access scheme in 5G systems for the simultaneous access of tremendous number of wireless nodes. On the other hand, RF-enabled wireless energy harvesting is a promising technology for self-
This paper proposes a new design of non-orthogonal multiple access (NOMA) under secrecy considerations. We focus on a NOMA system where a transmitter sends confidential messages to multiple users in the presence of an external eavesdropper. The optim
We introduce clustered millimeter wave networks with invoking non-orthogonal multiple access~(NOMA) techniques, where the NOMA users are modeled as Poisson cluster processes and each cluster contains a base station (BS) located at the center. To prov