ترغب بنشر مسار تعليمي؟ اضغط هنا

First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

187   0   0.0 ( 0 )
 نشر من قبل Enrico Giro
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Giro




اسأل ChatGPT حول البحث

The Cherenkov Telescope Array (CTA) represents the most advanced facility designed for Cherenkov Astronomy. ASTRI SST-2M has been developed as a demonstrator for the Small Size Telescope in the context of the upcoming CTA. Its main innovation consists in the optical layout which implements the Schwarzschild-Couder configuration and is fully validated for the first time. The ASTRI SST-2M optical system represents the first qualified example for two mirrors telescope for Cherenkov Astronomy. This configuration permits to (i) maintain a high optical quality across a large FoV (ii) de-magnify the plate scale, (iii) exploit new technological solutions for focal plane sensors. The goal of the paper is to present the optical qualification of the ASTRI SST-2M telescope. The qualification has been obtained measuring the PSF sizes generated in the focal plane at various distance from the optical axis. These values have been compared with the performances expected by design. After an introduction on the Gamma Astronomy from the ground, the optical design and how it has been implemented for ASTRI SST-2M is discussed. Moreover the description of the setup used to qualify the telescope over the full field of view is shown. We report the results of the first--light optical qualification. The required specification of a flat PSF of $sim 10$ arcmin in a large field of view ~10 deg has been demonstrated. These results validate the design specifications, opening a new scenario for Cherenkov Gamma ray Astronomy and, in particular, for the detection of high energy (5 - 300 TeV) gamma rays and wide-field observations with CTA.



قيم البحث

اقرأ أيضاً

ASTRI is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by the Italian National Institute of Astrophysics, INAF. Primary goal of the ASTRI project is the design and production of an end-to-end proto type of Small Size Telescope for the CTA (Cherenkov Telescope Array) in a dual-mirror configuration (SST-2M) equipped with a camera at the focal plane composed by an array of Silicon Photo-Multipliers and devoted to the investigation of the highest gamma-ray energy band. The ASTRI SST-2M prototype will be placed at the INAF M.G. Fracastoro observing station in Serra La Nave on the Etna Mountain near Catania, Italy. After the verification tests, devoted to probe the technological solutions adopted, the ASTRI SST-2M prototype will perform scientific observations on the Crab Nebula and on some of the brightest TeV sources. Here we present the Serra La Nave site, its meteorological and weather conditions, the sky darkness and visibility, and the complex of auxiliary instrumentation that will be used on site to support the calibration and science verification phase as well as the regular data reconstruction and analysis of the ASTRI SST-2M prototype.
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is an Italian flagship project pursued by INAF (Istituto Nazionale di Astrofisica) strictly linked to the development of the Cherenkov Telescope Array, CTA. Primary goal of the ASTRI pr ogram is the design and production of an end-to-end prototype of a Small Size Telescope for the CTA sub-array devoted to the highest gamma-ray energy region. The prototype, named ASTRI SST-2M, will be tested on field in Italy during 2014. This telescope will be the first Cherenkov telescope adopting the double reflection layout in a Schwarzschild-Couder configuration with a tessellated primary mirror and a monolithic secondary mirror. The collected light will be focused on a compact and light-weight camera based on silicon photo-multipliers covering a 9.6 deg full field of view. Detailed Monte Carlo simulations have been performed to estimate the performance of the planned telescope. The results regarding its energy threshold, sensitivity and angular resolution are shown and discussed.
We report on the first detection of very high-energy (VHE) gamma-ray emission from the Crab Nebula by a Cherenkov telescope in dual-mirror Schwarzschild-Couder (SC) configuration. The result has been achieved by means of the 4 m size ASTRI-Horn teles cope, operated on Mt. Etna (Italy) and developed in the context of the Cherenkov Telescope Array Observatory preparatory phase. The dual-mirror SC design is aplanatic and characterized by a small plate scale, allowing us to implement large field of view cameras with small-size pixel sensors and a high compactness. The curved focal plane of the ASTRI camera is covered by silicon photo-multipliers (SiPMs), managed by an unconventional front-end electronics based on a customized peak-sensing detector mode. The system includes internal and external calibration systems, hardware and software for control and acquisition, and the complete data archiving and processing chain. The observations of the Crab Nebula were carried out in December 2018, during the telescope verification phase, for a total observation time (after data selection) of 24.4 h, equally divided into on- and off-axis source exposure. The camera system was still under commissioning and its functionality was not yet completely exploited. Furthermore, due to recent eruptions of the Etna Volcano, the mirror reflection efficiency was reduced. Nevertheless, the observations led to the detection of the source with a statistical significance of 5.4 sigma above an energy threshold of ~3 TeV. This result provides an important step towards the use of dual-mirror systems in Cherenkov gamma-ray astronomy. A pathfinder mini-array based on nine large field-of-view ASTRI-like telescopes is under implementation.
The Cherenkov Telescope Array (CTA), with more than 100 telescopes, will be the largest ever ground-based gamma-ray observatory and is expected to greatly improve on both gamma-ray detection sensitivity and energy coverage compared to current-generat ion detectors. The 9.7-m Schwarzschild-Couder telescope (SCT) is one of the two candidates for the medium size telescope (MST) design for CTA. The novel aplanatic dual-mirror SCT design offers a wide field-of-view with a compact plate scale, allowing for a large number of camera pixels that improves the angular resolution and reduce the night sky background noise per pixel compared to the traditional single-mirror Davies-Cotton (DC) design of ground-based gamma-ray telescopes. The production, installation, and the alignment of the segmented aspherical mirrors are the main challenges for the realization of the SCT optical system. In this contribution, we report on the commissioning status, the alignment procedures, and initial alignment results during the initial commissioning phase of the optical system of the prototype SCT.
We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give a status report of the camera design and highlight a number of technological advancements that made this development possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا