ﻻ يوجد ملخص باللغة العربية
Most exoplanets detected so far have atmospheric T significantly higher than 300K. Often close to their star, they receive an intense UV photons flux that triggers important photodissociation processes. The T dependency of VUV absorption cross sections are poorly known, leading to an undefined uncertainty in atmospheric models. Similarly, data measured at low T similar to that of the high atmosphere of Mars, Venus, and Titan are often lacking. Our aim is to quantify the T dependency of the abs. cross section of important molecules in planetary atmospheres. We want to provide both high-resolution data at T prevailing in these media and a simple parameterization of the absorption in order to simplify its use in photochemical models. This study focuses on carbon dioxide. We performed experimental measurements of CO$_2$ absorption cross section with synchrotron radiation for the wavelength range (115--200nm). For longer wavelengths (195--230nm), we used a deuterium lamp and a 1.5m Jobin-Yvon spectrometer. We used these data in our 1D thermo-photochemical model in order to study their impact on the predicted atmospheric compositions. The cross section of CO$_2$ increases with T. It can be separated in two parts: a continuum and a fine structure superimposed on the continuum. The variation of the continuum of absorption can be represented by the sum of three gaussian functions. Using data at high T in thermo-photochemical models modifies significantly the abundance and the photodissociation rates of many species, in addition to CO$_2$, such as methane and ammonia. These deviations have an impact on synthetic transmission spectra, leading to variations of up to 5 ppm. We present a full set of HR ($Delta lambda$=0.03nm) absorption cross sections of CO$_2$ from 115 to 230nm for T ranging from 150 to 800K.
Ultraviolet (UV) absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar
UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Trans
Today, we know ~4330 exoplanets orbiting their host stars in ~3200 planetary systems. The diversity of these exoplanets is large, and none of the known exoplanets is a twin to any of the solar system planets, nor is any of the known extrasolar planet
Sophisticated atmospheric retrieval algorithms, such as Nested Sampling, explore large parameter spaces by iterating over millions of radiative transfer (RT) calculations. Probability distribution functions for retrieved parameters are highly sensiti
Computing and using opacities is a key part of modeling and interpreting data of exoplanetary atmospheres. Since the underlying spectroscopic line lists are constantly expanding and currently include up to ~ 10^10 - 10^11 transition lines, the opacit