ﻻ يوجد ملخص باللغة العربية
We derive a computationally convenient formula for the large sample coverage probability of a confidence interval for a scalar parameter of interest following a preliminary hypothesis test that a specified vector parameter takes a given value in a general regression model. Previously, this large sample coverage probability could only be estimated by simulation. Our formula only requires the evaluation, by numerical integration, of either a double or triple integral, irrespective of the dimension of this specified vector parameter. We illustrate the application of this formula to a confidence interval for the log odds ratio of myocardial infarction when the exposure is recent oral contraceptive use, following a preliminary test that two specified interactions in a logistic regression model are zero. For this real-life data, we compare this large sample coverage probability with the actual coverage probability of this confidence interval, obtained by simulation.
We consider a linear regression model, with the parameter of interest a specified linear combination of the regression parameter vector. We suppose that, as a first step, a data-based model selection (e.g. by preliminary hypothesis tests or minimizin
We consider a general regression model, without a scale parameter. Our aim is to construct a confidence interval for a scalar parameter of interest $theta$ that utilizes the uncertain prior information that a distinct scalar parameter $tau$ takes the
We consider a linear regression model with regression parameter beta=(beta_1,...,beta_p) and independent and identically N(0,sigma^2) distributed errors. Suppose that the parameter of interest is theta = a^T beta where a is a specified vector. Define
Consider a linear regression model and suppose that our aim is to find a confidence interval for a specified linear combination of the regression parameters. In practice, it is common to perform a Durbin-Watson pretest of the null hypothesis of zero
We compare the following two sources of poor coverage of post-model-selection confidence intervals: the preliminary data-based model selection sometimes chooses the wrong model and the data used to choose the model is re-used for the construction of the confidence interval.