ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence for disks at an early stage in class 0 protostars?

69   0   0.0 ( 0 )
 نشر من قبل J\\'er\\^ome Pety
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Gerin




اسأل ChatGPT حول البحث

The formation epoch of protostellar disks is debated because of the competing roles of rotation, turbulence, and magnetic fields in the early stages of low-mass star formation. Magnetohydrodynamics simulations of collapsing cores predict that rotationally supported disks may form in strongly magnetized cores through ambipolar diffusion or misalignment between the rotation axis and the magnetic field orientation. Detailed studies of individual sources are needed to cross check the theoretical predictions. We present 0.06-0.1 resolution images at 350 GHz toward B1b-N and B1b-S, which are young class 0 protostars, possibly first hydrostatic cores. The images have been obtained with ALMA, and we compare these data with magnetohydrodynamics simulations of a collapsing turbulent and magnetized core. The submillimeter continuum emission is spatially resolved by ALMA. Compact structures with optically thick 350 GHz emission are detected toward both B1b-N and B1b-S, with 0.2 and 0.35 radii (46 and 80 au at the Perseus distance of 230 pc), within a more extended envelope. The flux ratio between the compact structure and the envelope is lower in B1b-N than in B1b-S, in agreement with its earlier evolutionary status. The size and orientation of the compact structure are consistent with 0.2 resolution 32 GHz observations obtained with the Very Large Array as a part of the VANDAM survey, suggesting that grains have grown through coagulation. The morphology, temperature, and densities of the compact structures are consistent with those of disks formed in numerical simulations of collapsing cores. Moreover, the properties of B1b-N are consistent with those of a very young protostar, possibly a first hydrostatic core. These observations provide support for the early formation of disks around low-mass protostars.



قيم البحث

اقرأ أيضاً

We investigate the possibility of the growth of magnetorotational instability (MRI) in disks around Class 0 protostars. We construct a disk model and calculate the chemical reactions of neutral and charged atoms, molecules and dust grains to derive t he abundance of each species and the ionization degree of the disk. Then, we estimate the diffusion coefficients of non-ideal magnetohydrodynamics effects such as ohmic dissipation, ambipolar diffusion and the Hall effect. Finally, we evaluate the linear growth rate of MRI in each area of the disk. We investigate the effect of changes in the strength and direction of the magnetic field in our disk model and we adopt four different dust models to investigate the effect of dust size distribution on the diffusion coefficients. Our results indicate that an MRI active region possibly exists with a weak magnetic field in a region far from the protostar where the Hall effect plays a role in the growth of MRI. On the other hand, in all models the disk is stable against MRI in the region within $<20$ au from the protostar on the equatorial plane. Since the size of the disks in the early stage of star formation is limited to $lesssim 10-$$20$ au, it is difficult to develop MRI-driven turbulence in such disks.
We present the first dust emission results toward a sample of seven protostellar disk candidates around Class 0 and I sources in the Perseus molecular cloud from the VLA Nascent Disk and Multiplicity (VANDAM) survey with ~0.05 or 12 AU resolution. To examine the surface brightness profiles of these sources, we fit the Ka-band 8 mm dust-continuum data in the u,v-plane to a simple, parametrized model based on the Shakura-Sunyaev disk model. The candidate disks are well-fit by a model with a disk-shaped profile and have masses consistent with known Class 0 and I disks. The inner-disk surface densities of the VANDAM candidate disks have shallower density profiles compared to disks around more evolved Class II systems. The best-fit model radii of the seven early-result candidate disks are R_c > 10 AU; at 8 mm, the radii reflect lower limits on the disk size since dust continuum emission is tied to grain size and large grains radially drift inwards. These relatively large disks, if confirmed kinematically, are inconsistent with theoretical models where the disk size is limited by strong magnetic braking to < 10 AU at early times.
192 - John J. Tobin 2015
We present a CARMA 1.3 mm continuum survey toward 9 Class 0 protostars in the Perseus molecular cloud at $sim$0.3$^{primeprime}$ (70 AU) resolution. This study approximately doubles the number of Class 0 protostars observed with spatial resolutions $ <$ 100 AU at millimeter wavelengths, enabling the presence of protostellar disks and proto-binary systems to be probed. We detect flattened structures with radii $>$ 100 AU around 2 sources (L1448 IRS2 and Per-emb-14) and these sources may be strong disk candidates. Marginally-resolved structures with position angles within 30$^{circ}$ of perpendicular to the outflow are found toward 3 protostars (L1448 IRS3C, IRAS 03282+3035, and L1448C) and are considered disk candidates. Two others (L1448 IRS3B and IRAS 03292+3039) have resolved structure, possibly indicative of massive inner envelopes or disks; L1448 IRS3B also has a companion separated by 0.9$^{primeprime}$ ($sim$210 AU). IC348-MMS does not have well-resolved structure and the candidate first hydrostatic core L1451-MMS is marginally resolved on 1$^{primeprime}$ scales. The strong disk candidate sources were followed-up with C$^{18}$O ($J=2rightarrow1$) observations, detecting velocity gradients consistent with rotation, but it is unclear if the rotation is Keplerian. We compare the observed visibility amplitudes to radiative transfer models, finding that visibility amplitude ratios suggest a compact component (possibly a disk) is necessary for 5 of 9 Class 0 sources; envelopes alone may explain the other 4 systems. We conclude that there is evidence for the formation of large disks in the Class 0 phase with a range of radii and masses dependent upon their initial formation conditions.
With the Stratospheric Observatory for Infrared Astronomy (SOFIA) routinely operating science flights, we demonstrate that observations with the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) can provide reliable estimates of the inte rnal luminosities, $L_{rm int}$, of protostars. We have developed a technique to estimate $L_{rm int}$ using a pair of FORCAST filters: one short-wavelength filter centered within 19.7-25.3 $mu$m, and one long-wavelength filter within 31.5-37.1 $mu$m. These $L_{rm int}$ estimates are reliable to within 30-40% for 67% of protostars and to within a factor of 2.3-2.6 for 99% of protostars. The filter pair comprised of F25.3$mu$m and F37.1$mu$m achieves the best sensitivity and most constrained results. We evaluate several assumptions that could lead to systematic uncertainties. The OH5 dust opacity matches observational constraints for protostellar environments best, though not perfectly; we find that any improved dust model will have a small impact of 5-10% on the $L_{rm int}$ estimates. For protostellar envelopes, the TSC84 model yields masses that are twice those of the Ulrich model, but we conclude this mass difference does not significantly impact results at the mid-infrared wavelengths probed by FORCAST. Thus, FORCAST is a powerful instrument for luminosity studies targeting newly discovered protostars or suspected protostars lacking detections longward of 24 $mu$m. Furthermore, with its dynamic range and greater angular resolution, FORCAST may be used to characterize protostars that were either saturated or merged with other sources in previous surveys using the Spitzer Space Telescope or Herschel Space Observatory.
107 - L. Testi , A. Natta , A. Scholz 2016
The study of the properties of disks around young brown dwarfs can provide important clues on the formation of these very low-mass objects and on the possibility of forming planetary systems around them. The presence of warm dusty disks around brown dwarfs is well known, based on near- and mid-infrared studies. High angular resolution observations of the cold outer disk are limited; we used ALMA to attempt a first survey of young brown dwarfs in the $rho$-Oph star-forming region. All 17 young brown dwarfs in our sample were observed at 890 $mu $m in the continuum at $sim0.!^{primeprime}5$ angular resolution. The sensitivity of our observations was chosen to detect $sim0.5$ M$_oplus$ of dust. We detect continuum emission in 11 disks ($sim65$% of the total), and the estimated mass of dust in the detected disks ranges from $sim0.5$ to $sim6$ M$_oplus$. These disk masses imply that planet formation around brown dwarfs may be relatively rare and that the supra-Jupiter mass companions found around some brown dwarfs are probably the result of a binary system formation. We find evidence that the two brightest disks in $rho$-Oph have sharp outer edges at R<~25 AU, in contrast to disks around Taurus brown dwarfs. This difference may suggest that the different environment in $rho$-Oph may lead to significant differences in disk properties. A comparison of the M$_{disk}$/M$_ast$ ratio for brown dwarf and solar-mass systems also shows a possible deficit of mass in brown dwarfs, which could support the evidence for dynamical truncation of disks in the substellar regime. These findings are still tentative and need to be put on firmer grounds by studying the gaseous disks around brown dwarfs and by performing a more systematic and unbiased survey of the disk population around the more massive stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا