ﻻ يوجد ملخص باللغة العربية
Let $pi_1=(d_1^{(1)}, ldots,d_n^{(1)})$ and $pi_2=(d_1^{(2)},ldots,d_n^{(2)})$ be graphic sequences. We say they emph{pack} if there exist edge-disjoint realizations $G_1$ and $G_2$ of $pi_1$ and $pi_2$, respectively, on vertex set ${v_1,dots,v_n}$ such that for $jin{1,2}$, $d_{G_j}(v_i)=d_i^{(j)}$ for all $iin{1,ldots,n}$. In this case, we say that $(G_1,G_2)$ is a $(pi_1,pi_2)$-textit{packing}. A clear necessary condition for graphic sequences $pi_1$ and $pi_2$ to pack is that $pi_1+pi_2$, their componentwise sum, is also graphic. It is known, however, that this condition is not sufficient, and furthermore that the general problem of determining if two sequences pack is $NP$- complete. S.~Kundu proved in 1973 that if $pi_2$ is almost regular, that is each element is from ${k-1, k}$, then $pi_1$ and $pi_2$ pack if and only if $pi_1+pi_2$ is graphic. In this paper we will consider graphic sequences $pi$ with the property that $pi+mathbf{1}$ is graphic. By Kundus theorem, the sequences $pi$ and $mathbf{1}$ pack, and there exist edge-disjoint realizations $G$ and $mathcal{I}$, where $mathcal{I}$ is a 1-factor. We call such a $(pi,mathbf{1})$ packing a {em Kundu realization}. Assume that $pi$ is a graphic sequence, in which each term is at most $n/24$, that packs with $mathbf{1}$. This paper contains two results. On one hand, any two Kundu realizations of the degree sequence $pi+mathbf{1}$ can be transformed into each other through a sequence of other Kundu realizations by swap operations. On the other hand, the same conditions ensure that any particular 1-factor can be part of a Kundu realization of $pi+mathbf{1}$.
The class of quasi-graphic matroids recently introduced by Geelen, Gerards, and Whittle generalises each of the classes of frame matroids and lifted-graphic matroids introduced earlier by Zaslavsky. For each biased graph $(G, mathcal B)$ Zaslavsky de
A {em connectivity function} on a set $E$ is a function $lambda:2^Erightarrow mathbb R$ such that $lambda(emptyset)=0$, that $lambda(X)=lambda(E-X)$ for all $Xsubseteq E$, and that $lambda(Xcap Y)+lambda(Xcup Y)leq lambda(X)+lambda(Y)$ for all $X,Y s
Lattice theory has been believed to resist classical computers and quantum computers. Since there are connections between traditional lattices and graphic lattices, it is meaningful to research graphic lattices. We define the so-called ice-flower sys
For an abelian group $Gamma$, a $Gamma$-labelled graph is a graph whose vertices are labelled by elements of $Gamma$. We prove that a certain collection of edge sets of a $Gamma$-labelled graph forms a delta-matroid, which we call a $Gamma$-graphic d
We introduce delta-graphic matroids, which are matroids whose bases form graphic delta-matroids. The class of delta-graphic matroids contains graphic matroids as well as cographic matroids and is a proper subclass of the class of regular matroids. We