ﻻ يوجد ملخص باللغة العربية
We consider various curious features of general relativity, and relativistic field theory, in two spacetime dimensions. In particular, we discuss: the vanishing of the Einstein tensor; the failure of an initial-value formulation for vacuum spacetimes; the status of singularity theorems; the non-existence of a Newtonian limit; the status of the cosmological constant; and the character of matter fields, including perfect fluids and electromagnetic fields. We conclude with a discussion of what constrains our understanding of physics in different dimensions.
Randomness is an unavoidable notion in discussing quantum physics, and this may trigger the curiosity to know more of its cultural history. This text is an invitation to explore the position on the matter of Thomas Aquinas, one of the most prominent
Using the methods of ordinary quantum mechanics we study $kappa$-Minkowski space as a quantum space described by noncommuting self-adjoint operators, following and enlarging arXiv:1811.08409. We see how the role of Fourier transforms is played in thi
During the First World War, the status of energy conservation in general relativity was one of the most hotly debated questions surrounding Einsteins new theory of gravitation. His approach to this aspect of general relativity differed sharply from a
In this paper, we examine the relationship between general relativity and the theory of Einstein algebras. We show that according to a formal criterion for theoretical equivalence recently proposed by Halvorson (2012, 2015) and Weatherall (2015), the two are equivalent theories.
Most physics theories are deterministic, with the notable exception of quantum mechanics which, however, comes plagued by the so-called measurement problem. This state of affairs might well be due to the inability of standard mathematics to speak of