ترغب بنشر مسار تعليمي؟ اضغط هنا

Isoparametric theory and its applications

66   0   0.0 ( 0 )
 نشر من قبل Wenjiao Yan
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This is a survey on the recent progress in several applications of isoparametric theory, including an affirmative answer to Yaus conjecture on the first eigenvalue of Laplacian in the isoparametric case, a negative answer to Yaus 76th problem in his Problem Section, new examples of Willmore submanifolds in spheres, a series of examples to Besses problem on the generalization of Einstein condition, isoparametric functions on exotic spheres, counterexamples to two conjectures of Leung, as well as surgery theory on isoparametric foliation.



قيم البحث

اقرأ أيضاً

72 - R. Albuquerque 2021
We revisit Allendoerfer-Weils formula for the Euler characteristic of embedded hypersurfaces in constant sectional curvature manifolds, first taking some time to re-prove it while demonstrating techniques of [2] and then applying it to gain new understanding of isoparametric hypersurfaces.
144 - Jianquan Ge , Zizhou Tang 2018
The Hilberts 17th problem asks that whether every nonnegative polynomial can be a sum of squares of rational functions. It has been answered affirmatively by Artin. However, as to the question whether a given nonnegative polynomial is a sum of square s of polynomials is still a central question in real algebraic geometry. In this paper, we solve this question completely for the nonnegative polynomials associated with isoparametric polynomials (initiated by E. Cartan) which define the focal submanifolds of the corresponding isoparametric hypersurfaces.
67 - Chao Qian , Zizhou Tang 2018
Based on representation theory of Clifford algebra, Ferus, Karcher and M{u}nzner constructed a series of isoparametric foliations. In this paper, we will survey recent studies on isoparametric hypersurfaces of OT-FKM type and investigate related geometric constructions with mean curvature flow.
An isoparametric family in the unit sphere consists of parallel isoparametric hypersurfaces and their two focal submanifolds. The present paper has two parts. The first part investigates topology of the isoparametric families, namely the homotopy, ho meomorphism, or diffeomorphism types, parallelizability, as well as the Lusternik-Schnirelmann category. This part extends substantially the results of Q.M.Wang in cite{Wa88}. The second part is concerned with their curvatures, more precisely, we determine when they have non-negative sectional curvatures or positive Ricci curvatures with the induced metric.
Associated with isoparametric foliations of unit spheres, there are two classes of minimal surfaces $-$ minimal isoparametric hypersurfaces and focal submanifolds. By virtue of their rich structures, we find new series of minimizing cones. They are c ones over focal submanifolds and cones over suitable products among these two classes. Except in low dimensions, all such cones are shown minimizing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا