ﻻ يوجد ملخص باللغة العربية
Transition metal dichalcogenides have recently emerged as promising two-dimensional materials with intriguing electronic properties. Existing calculations of intrinsic phonon-limited electronic transport so far have concentrated on the semicondcucting members of this family. In this paper we extend these studies by investigating the influence of electron-phonon coupling on the electronic transport properties and band renormalization of prototype inherent metallic bulk and monolayer TaS$_2$. Based on density functional perturbation theory and semi-classical Boltzmann transport calculations, promising room temperature mobilities and sheet conductances are found, which can compete with other established 2D materials, leaving TaS$_2$ as promising material candidate for transparent conductors or as atomically thin interconnects. Throughout the paper, the electronic and transport properties of TaS$_2$ are compared to those of its isoelectronic counterpart TaSe$_2$ and additional informations to the latter are given. We furthermore comment on the conventional su- perconductivity in TaS$_2$, where no phonon-mediated enhancement of TC in the monolayer compared to the bulk state was found.
When electron-hole pairs are excited in a semiconductor, it is a priori not clear if they form a fermionic plasma of unbound particles or a bosonic exciton gas. Usually, the exciton phase is associated with low temperatures. In atomically thin transi
Twisted bilayers of two-dimensional materials, such as twisted bilayer graphene, often feature flat electronic bands that enable the observation of electron correlation effects. In this work, we study the electronic structure of twisted transition me
The electron valley and spin degree of freedom in monolayer transition-metal dichalcogenides can be manipulated in optical and transport measurements performed in magnetic fields. The key parameter for determining the Zeeman splitting, namely the sep
NbSe$_3$ and monoclinic-TaS$_3$ ($m$-TaS$_3$) are quasi-1D metals containing three different types of chains and undergoing two different charge density wave (CDW) Peierls transitions at T$_{P_1}$ and T$_{P_2}$. The nature of these transitions is dis
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral c