ﻻ يوجد ملخص باللغة العربية
This work reports flexible fully transparent high-voltage diodes that feature high rectification ratio (Rr 10 8) and high breakdown voltage (Vb 150 V) simultaneously, combined with their applications as building blocks of energy management systems in wearable electronics where triboelectric nanogenerators (TENGs) are used as power source. Both experimental results and technology computer aided design (TCAD) simulations suggest that Rr and Vb can be modulated by the offset length in an opposite tendency. The low reverse leakage current (fA/MICRON) guarantees an ultra-low power consumption in standby mode, which is a core issue in wearable device applications. Besides the unprecedented electrical performance, the diodes exhibit good mechanical robustness with minimal degradation throughout the strain and fatigue tests. By incorporating these high-voltage diodes into half-wave and full-wave rectifier circuits, the high alternating current (AC) output voltage of TENGs is successfully rectified into direct current (DC) voltage and charged into supercapacitors (SCs), indicating their high integration and compatibility with TENGs, and thus their promising applications in various wearable electronic systems.
Diodes made of heterostructures of the 2D material graphene and conventional 3D materials are reviewed in this manuscript. Several applications in high frequency electronics and optoelectronics are highlighted. In particular, advantages of metal-insu
The rise of flexible electronics calls for cost-effective and scalable batteries with good mechanical and electrochemical performance. In this work, we developed printable, polymer-based AgO-Zn batteries that feature flexibility, rechargeability, hig
The radiative recombination of injected charge carriers gives rise to electroluminescence (EL), a central process for light-emitting diode (LED) operation. It is often presumed in some emerging fields of optoelectronics, including perovskite and orga
The celebrated electronic properties of graphene have opened way for materials just one-atom-thick to be used in the post-silicon electronic era. An important milestone was the creation of heterostructures based on graphene and other two-dimensional
The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p