ترغب بنشر مسار تعليمي؟ اضغط هنا

Trading Computation for Communication: A Taxonomy

101   0   0.0 ( 0 )
 نشر من قبل Ismail Akturk
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A critical challenge for modern system design is meeting the overwhelming performance, storage, and communication bandwidth demand of emerging applications within a tightly bound power budget. As both the time and power, hence the energy, spent in data communication by far exceeds the energy spent in actual data generation (i.e., computation), (re)computing data can easily become cheaper than storing and retrieving (pre)computed data. Therefore, trading computation for communication can improve energy efficiency by minimizing the energy overhead incurred by data storage, retrieval, and communication. This paper hence provides a taxonomy for the computation vs. communication trade-off along with quantitative characterization.



قيم البحث

اقرأ أيضاً

76 - Liangkai Liu , Shaoshan Liu , 2021
Connected and autonomous vehicles (CAVs) are promising due to their potential safety and efficiency benefits and have attracted massive investment and interest from government agencies, industry, and academia. With more computing and communication re sources are available, both vehicles and edge servers are equipped with a set of camera-based vision sensors, also known as Visual IoT (V-IoT) techniques, for sensing and perception. Tremendous efforts have been made for achieving programmable communication, computation, and control. However, they are conducted mainly in the silo mode, limiting the responsiveness and efficiency of handling challenging scenarios in the real world. To improve the end-to-end performance, we envision that future CAVs require the co-design of communication, computation, and control. This paper presents our vision of the end-to-end design principle for CAVs, called 4C, which extends the V-IoT system by providing a unified communication, computation, and control co-design framework. With programmable communications, fine-grained heterogeneous computation, and efficient vehicle controls in 4C, CAVs can handle critical scenarios and achieve energy-efficient autonomous driving. Finally, we present several challenges to achieving the vision of the 4C framework.
Recently, Graph Neural Networks (GNNs) have received a lot of interest because of their success in learning representations from graph structured data. However, GNNs exhibit different compute and memory characteristics compared to traditional Deep Ne ural Networks (DNNs). Graph convolutions require feature aggregations from neighboring nodes (known as the aggregation phase), which leads to highly irregular data accesses. GNNs also have a very regular compute phase that can be broken down to matrix multiplications (known as the combination phase). All recently proposed GNN accelerators utilize different dataflows and microarchitecture optimizations for these two phases. Different communication strategies between the two phases have been also used. However, as more custom GNN accelerators are proposed, the harder it is to qualitatively classify them and quantitatively contrast them. In this work, we present a taxonomy to describe several diverse dataflows for running GNN inference on accelerators. This provides a structured way to describe and compare the design-space of GNN accelerators.
Recent trend towards increasing large machine learning models require both training and inference tasks to be distributed. Considering the huge cost of training these models, it is imperative to unlock optimizations in computation and communication t o obtain best performance. However, current logical separation between computation and communication kernels in deep learning frameworks misses the optimization opportunities across such barrier. Breaking this abstraction with a holistic consideration can provide many optimizations to provide performance improvements in distributed workloads. Manually applying these optimizations needs modifications in underlying computation and communication libraries for each scenario, which is time consuming and error-prone. Therefore, we present CoCoNeT, with a DSL to express a program with both computation and communication. CoCoNeT contains several machine learning aware transformations to optimize a program and a compiler to generate high performance kernels. Providing both computation and communication as first class constructs allows users to work on a high-level abstraction and apply powerful optimizations, such as fusion or overlapping of communication and computation. CoCoNeT enables us to optimize data-, model-and pipeline-parallel workloads in large language models with only a few lines of code. Experiments show CoCoNeT significantly outperforms state-of-the-art distributed machine learning implementations.
107 - Varun Sharma , Paul Chow 2021
This work presents a heterogeneous communication library for clusters of processors and FPGAs. This library, Shoal, supports the Partitioned Global Address Space (PGAS) memory model for applications. PGAS is a shared memory model for clusters that cr eates a distinction between local and remote memory access. Through Shoal and its common application programming interface for hardware and software, applications can be more freely migrated to the optimal platform and deployed onto dynamic cluster topologies. The library is tested using a thorough suite of microbenchmarks to establish latency and throughput performance. We also show an implementation of the Jacobi iterative method that demonstrates the ease with which applications can be moved between platforms to yield faster run times. Through this work, we have demonstrated the feasibility of using a PGAS programming model for multi-node heterogeneous platforms.
Distributed quantum computation requires quantum operations that act over a distance on error-correction encoded states of logical qubits, such as the transfer of qubits via teleportation. We evaluate the performance of several quantum error correcti on codes, and find that teleportation failure rates of one percent or more are tolerable when two levels of the [[23,1,7]] code are used. We present an analysis of performing quantum error correction (QEC) on QEC-encoded states that span two quantum computers, including the creation of distributed logical zeroes. The transfer of the individual qubits of a logical state may be multiplexed in time or space, moving serially across a single link, or in parallel across multiple links. We show that the performance and reliability penalty for using serial links is small for a broad range of physical parameters, making serial links preferable for a large, distributed quantum multicomputer when engineering difficulties are considered. Such a multicomputer will be able to factor a 1,024-bit number using Shors algorithm with a high probability of success.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا