We report the first measurement of the fusion excitation functions for $^{39,47}$K + $^{28}$Si at near-barrier energies. Evaporation residues resulting from the fusion process were identified by direct measurement of their energy and time-of-flight with high geometric efficiency. At the lowest incident energy, the cross-section measured for the neutron-rich $^{47}$K induced reaction is ~6 times larger than that of the $beta$-stable system. The experimental data are compared with both a dynamical deformation model and coupled channels calculations (CCFULL).
The dependence of fusion dynamics on neutron excess for light nuclei is extracted. This is accomplished by comparing the average fusion cross-section at energies just above the fusion barrier for $^{12-15}$C + $^{12}$C with measurements of the intera
ction cross-section from high evergy collisions. The experimental results indicate that the fusion cross-section associated with dynamics increases with increasing neutron excess. Calculations with a time-dependent Hartree-Fock model fail to describe the observed trend.
Fusion excitation function of $^{35}$Cl + $^{130}$Te system is measured in the energy range around the Coulomb barrier and analyzed in the framework of the coupled-channels approach. The role of projectile deformation, nuclear structure, and the coup
lings of inelastic excitations and positive Q$-$value neutron transfer channels in sub-barrier fusion are investigated through the comparison of reduced fusion excitation functions of $^{35,37}$Cl +$^{130}$Te systems. The reduced fusion excitation function of $^{35}$Cl + $^{130}$Te system shows substantial enhancement over $^{37}$Cl + $^{130}$Te system in sub-barrier energy region which is attributed to the presence of positive Q-value neutron transfer channels in $^{35}$Cl + $^{130}$Te system. Findings of this work strongly suggest the importance of +2$n$ - transfer coupling in sub-barrier fusion apart from the simple inclusion of inelastic excitations of interacting partners, and are in stark contrast with the results presented by Kohley textit{et al.}, [Phys. Rev. Lett. 107, 202701 (2011)].
The JYFLTRAP mass spectrometer was used to measure the masses of neutron-rich nuclei in the region between N = 28 to N = 82 with uncertainties better than 10 keV. The impacts on nuclear structure and the r-process paths are reviewed.
Excitation functions were measured by stacked-foil activation technique for the $^{150}$Nd(p, xpyn) reaction using 97.65$%$ enriched $^{150}$Nd target. Measurement up to $sim$50$%$ above barrier and down to 18$%$ below the barrier was performed using
proton beam energy (E$_p$) of 7 - 15 MeV from VECC Cyclotron. The yield of suitable $gamma$ rays emitted following the decay of relevant evaporation residues was determined using a 50$%$ High Purity Germanium (HPGe) detector.(p,n) cross section was found to follow the expected trend with a maximum value of 63.7(4.9)mb at E$_p$ $sim$ 8.6 MeV. (p,2n) cross section gradually increased with E$_p$ and had maximum contribution to the total reaction cross section after E$_p$ $sim$ 9.0 MeV. (p, p$^{prime}$n) reaction channel also showed a reasonable yield with a threshold of E$_p$ $sim$ 12.0 MeV. The experimental data were corroborated with statistical model calculations using different codes, viz., CASCADE, ALICE/91 and EMPIRE3.1. All the calculations using a suitable set of global parameters could reproduce the excitation function fairly well in the present energy range.
Above-barrier fusion cross-sections for an isotopic chain of oxygen isotopes with A=16-19 incident on a $^{12}$C target are presented. Experimental data are compared with both static and dynamical microscopic calculations. These calculations are unab
le to explain the $sim$37% increase in the average above-barrier fusion cross-section observed for $^{19}$O as compared to $beta$-stable oxygen isotopes. This result suggests that for neutron-rich nuclei existing time-dependent Hartree-Fock calculations underpredict the role of dynamics at near-barrier energies. High-quality measurement of above-barrier fusion for an isotopic chain of increasingly neutron-rich nuclei provides an effective means to probe this fusion dynamics.
J. Vadas
,Varinderjit Singh
,B.B. Wiggins
.
(2017)
.
"Disentangling the role of vibration, rotation, and neutron transfer in the fusion of neutron-rich mid-mass nuclei"
.
Romualdo deSouza
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا