ﻻ يوجد ملخص باللغة العربية
We report a comprehensive $^{139}$La and $^{63}$Cu nuclear magnetic resonance study on La$_{2-x}$Sr$_x$CuO$_4$ ($0.07leq x leq 0.2$) single crystals. The $^{139}$La spin-lattice relaxation rate $^{139}T_1^{-1}$ is drastically influenced by Sr doping $x$ at low temperatures. A detailed field dependence of $^{139}T_1^{-1}$ at $x=1/8$ suggests that charge ordering induces the critical slowing down of spin fluctuations toward glassy spin order and competes with superconductivity. On the other hand, the $^{63}$Cu relaxation rate $^{63}T_1^{-1}$ is well described by a Curie-Weiss law at high temperatures, yielding the Curie-Weiss temperature $Theta$ as a function of doping. $Theta$ changes sharply through a critical hole concentration $x_csim 0.09$. $x_c$ appears to correspond to the delocalization limit of doped holes, above which the bulk nature of superconductivity is established.
The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone i
We report detailed systematic measurements of the spatial variation in electronic states in the high T{c} superconductor La{2-x}Sr{x}CuO{4} (0.04<= x <= 0.16) using {63}Cu NQR for {63}Cu isotope enriched poly-crystalline samples. We demonstrate that
Due to the orthorhombic distortion of the lattice, the electronic hopping integrals along the $a$ and $b$ diagonals, the orthorhombic directions, are slightly different. We calculate their difference in the LDA and find $t_{a}^{prime}-t_{b}^{prime}ap
We present results of inelastic light scattering experiments on single-crystalline La$_{2-x}$Sr$_{x}$CuO$_4$ in the doping range $0.00 le x=p le 0.30$ and Tl$_2$Ba$_2$CuO$_{6+delta}$ at $p=0.20$ and $p=0.24$. The main emphasis is placed on the respon
We report detailed thermodynamic and transport measurements for non-superconducting La$_{1.7}$Sr$_{0.3}$CuO$_4$. Collectively, these data reveal that a highly-correlated Fermi-liquid ground state exists in La$_{2-x}$Sr$_x$CuO$_4$ beyond the supercond