ﻻ يوجد ملخص باللغة العربية
Over the past decade, capacitive deionization (CDI) has realized a surge in attention in the field of water desalination and can now be considered as an important technology class, along with reverse osmosis and electrodialysis. While many of the recently developed technologies no longer use a mechanism that follows the strict definition of the term capacitive, these methods nevertheless share many common elements that encourage treating them with similar metrics and analyses. Specifically, they all involve electrically driven removal of ions from a feed stream, storage in an electrode (i.e., ion electrosorption) and release, in charge/discharge cycles. Grouping all these methods in the technology class of CDI makes it possible to treat evolving new technologies in standardized terms and compare them to other technologies in the same class.
In the growing field of capacitive deionization (CDI), a number of performance metrics have emerged to describe the desalination process. Unfortunately, the separation conditions under which these metrics are measured are often not specified, resulti
The electrosorption of Gd$^{3+}$ ions from aqueous 70$,$mM Gd(NO$_3$)$_3$ solution in monolithic carbon aerogel electrodes was recorded by dynamic neutron imaging. The aerogels have a bimodal pore size distribution consisting of macropores centred at
We demonstrate the phenomenon of induced-charge capacitive deionization (ICCDI) that occurs around a porous and conducting particle immersed in an electrolyte, under the action of an external electric field. The external electric field induces an ele
To realize nanomechanical graphene-based pressure and gas sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electro-mechanical systems (ME
Nanopore desalination technology hinges on high water-permeable membranes which, at the same time, block ions efficiently. In this study, we consider a recently synthesized [Science 363, 151-155 (2019)] phenine nanotube (PNT) for water desalination a