ﻻ يوجد ملخص باللغة العربية
Anomaly cancelation has been shown to occur in time-reversal symmetry-broken Weyl metals, which explains the existence of a Fermi arc. We extend this result in the case of inversion symmetry-broken Weyl metals. Constructing a minimal model that takes a double pair of Weyl points, we demonstrate the anomaly cancelation explicitly. This demonstration explains why a chiral pair of Fermi arcs appear in inversion symmetry-broken Weyl metals. In particular, we find that this pair of Fermi arcs gives rise to either quantized spin Hall or valley Hall effects, which corresponds to the quantized version of the charge Hall effect in time-reversal symmetry-broken Weyl metals.
In Weyl semimetals the application of parallel electric and magnetic fields leads to valley polarization -- an occupation disbalance of valleys of opposite chirality -- a direct consequence of the chiral anomaly. In this work, we present numerical to
We propose a new approach to derive spin torque in systems of broken inversion symmetry. It uses the concepts of asymmetric and directional spin-spin interactions to obtain their effective fields. We applied the effective fields into the Landau-Lifsh
Chiral anomaly or Adler-Bell-Jackiw anomaly in Weyl semimetals (WSMs) has a significant impact on the electron transport behaviors, leading to remarkable longitudinal or planar electrical and thermoelectric transport phenomena in the presence of elec
Condensed matter systems realizing Weyl fermions exhibit striking phenomenology derived from their topologically protected surface states as well as chiral anomalies induced by electromagnetic fields. More recently, inhomogeneous strain or magnetizat
The monopnictides TaAs and TaP are well-established Weyl semimetals. Yet, a precise assignment of Fermi arcs, accomodating the predicted chiral charge of the bulk Weyl points, has been difficult in these systems, and the topological character of diff