ﻻ يوجد ملخص باللغة العربية
Gravitational redshift as a relativistic effect in cosmological objects is investigated. Possible signatures of the gravitational redshift in measurements of satellite galaxies in clusters of galaxies, intracluster gas, as well as galaxies associated with voids are investigated by developing simple theoretical models. In the analysis of the gravitational redshift of satellite galaxies, we develop a very simple analytic model for satellite galaxies virialised in halos, which enables us to evaluate the signals depending on the properties of the halo occupation distribution of galaxies. We obtain results consistent with recent previous results, though our results are restricted to the satellite galaxies inside the virial radius. In the analysis of intracluster gas, we develop a simple analytic model including the effect of random motions of gases, which are assumed to generate nonthermal pressure. We demonstrate a possible contribution of the random motions of gases to the gravitational redshift. We also investigate a possible signature of the gravitational redshift in measurements of galaxies associated with voids, for the first time as far as we know, by utilising a simple analytic model. We show that the second-order Hubble term, which appears in the expansion of the scale factor around the centre of a void, may make a significant contribution depending on the way the galaxy samples are analysed.
The recent measurement of the gravitational redshifts of galaxies in galaxy clusters by Wojtak et al. has opened a new observational window on dark matter and modified gravity. By stacking clusters this determination effectively used the line of sigh
There is growing interest in testing alternative gravity theories using the subtle gravitational redshifts in clusters of galaxies. However, current models all neglect a transverse Doppler redshift of similar magnitude, and some models are not self-c
Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field - here with a Galileon-type symmetry. The field can lead
Massive young clusters (YCs) are expected to host intermediate-mass black holes (IMBHs) born via runaway collapse. These IMBHs are likely in binaries and can undergo mergers with other compact objects, such as stellar mass black holes (BHs) and neutr
Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distr