ترغب بنشر مسار تعليمي؟ اضغط هنا

A lax monoidal Topological Quantum Field Theory for representation varieties

160   0   0.0 ( 0 )
 نشر من قبل \\'Angel Gonz\\'alez-Prieto
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a lax monoidal Topological Quantum Field Theory that computes Deligne-Hodge polynomials of representation varieties of the fundamental group of any closed manifold into any complex algebraic group $G$. As byproduct, we obtain formulas for these polynomials in terms of homomorphisms between the space of mixed Hodge modules on $G$. The construction is developed in a categorical-theoretic framework allowing its application to other situations.



قيم البحث

اقرأ أيضاً

We count points over a finite field on wild character varieties of Riemann surfaces for singularities with regular semisimple leading term. The new feature in our counting formulas is the appearance of characters of Yokonuma-Hecke algebras. Our resul t leads to the conjecture that the mixed Hodge polynomials of these character varieties agree with previously conjectured perverse Hodge polynomials of certain twisted parabolic Higgs moduli spaces, indicating the possibility of a P=W conjecture for a suitable wild Hitchin system.
We give a complete description of the equivariant quantum cohomology ring of any smooth hypertoric variety, and find a mirror formula for the quantum differential equation.
156 - Andrei Okounkov 2017
This is an introduction to: (1) the enumerative geometry of rational curves in equivariant symplectic resolutions, and (2) its relation to the structures of geometric representation theory. Written for the 2015 Algebraic Geometry Summer Institute.
In this mainly expository note, we state a criterion for when a left Kan extension of a lax monoidal functor along a strong monoidal functor can itself be equipped with a lax monoidal structure, in a way that results in a left Kan extension in MonCat . This belongs to the general theory of algebraic Kan extensions, as developed by Melli`es-Tabareau, Koudenburg and Weber, and is very close to an instance of a theorem of Koudenburg. We find this special case particularly important due to its connections with the theory of graded monads.
We introduce and study several new topological operads that should be regarded as nonsymmetric analogues of the operads of little 2-disks, framed little 2-disks, and Deligne-Mumford compactifications of moduli spaces of genus zero curves with marked points. These operads exhibit all the remarkable algebraic and geometric features that their classical analogues possess; in particular, it is possible to define a noncommutative analogue of the notion of cohomological field theory with similar Givental-type symmetries. This relies on rich geometry of the analogues of the Deligne-Mumford spaces, coming from the fact that they admit several equivalent interpretations: as the toric varieties of Lodays realisations of the associahedra, as the brick manifolds recently defined by Escobar, and as the De Concini-Procesi wonderful models for certain subspace arrangements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا