ﻻ يوجد ملخص باللغة العربية
We consider two basic nuclear reactions: Radiative capture of neutrons by protons, $n+pto gamma+~d$ and its time-reversed counterpart, photodisintegration of the deuteron, $gamma +dto n+p$. In both of these cases we assume that the incoming beam of neutrons or photons is twisted by having an azimuthal phase dependence, {it i.e.}, it carries an additional angular momentum along its direction of propagation. Taking a low-energy limit of these reactions, we derive relations between corresponding transition amplitudes and cross sections with plane-wave beams and twisted beams. Implications for experiments with twisted cold neutrons and photon beams are discussed.
The differential cross section for radiative capture of protons by deuterons is calculated using different realistic NN interactions. We compare our results with the available experimental data below $E_x = 20 MeV$. Excellent agreement is found when
pd capture processes at various energies have been analyzed based on solutions of 3N-Faddeev equations and using modern NN forces. The application of the Siegert theorem is compared to the explicit use of $pi$- and $rho$-like exchange currents connec
The astrophysical $S$-factor for the radiative capture $d(p,gamma)^3$He in the energy-range of interest for Big Bang Nucleosynthesis (BBN) is calculated using an {it ab-initio} approach. The nuclear Hamiltonian retains both two- and three-nucleon int
We present a theoretical formalism for scattering of the twisted neutrons by nuclei in a kinematic regime where interference between Coulomb interaction and the strong interaction is essential. Twisted neutrons have definite quantized values of an an
Thanks to J.~Schwinger, the process of elastic scattering of neutrons by nuclei is known to depend on the interference between a nuclear amplitude and an electromagnetic one for small scattering angles, resulting in spin asymmetries of a cross sectio