ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrahigh-Quality Magneto-Optical Resonances of Electromagnetically Induced Absorption in a Buffer-Gas-Filled Vapor Cell

75   0   0.0 ( 0 )
 نشر من قبل Denis Brazhnikov V.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new configuration for observation of magneto-optical subnatural-linewidth resonances of electromagnetically induced absorption (EIA) in alkali vapor has been verified experimentally. The configuration includes using two counter-propagating pump and probe light waves with mutually orthogonal linear polarizations, exciting an open optical transition of an alkali atom in the presence of a buffer gas. The main advantage of the novel observation scheme consists in the possibility of obtaining simultaneously high-contrast and quite narrow nonlinear signals. Here a 2.5-cm long rubidium-87 vapor cell filled with Ar buffer gas is used, and the excited optical transition is the F$_g$=2 $to$ F$_e$=1 of the D$_1$ line. The signals registered reach a contrast of 57.7% with a FWHM of 7.2 mG. The contrast with respect to a wide Doppler pedestal well exceeds 100%. To our knowledge, to date this is the best result for EIA resonances in terms of contrast-to-width ratio. In general, the results demonstrate that the new magneto-optical scheme has very good prospects for various applications in quantum metrology, nonlinear optics and photonics.



قيم البحث

اقرأ أيضاً

We report on a theoretical study and experimental characterization of coherent population trapping (CPT) resonances in buffer gas-filled vapor cells with push-pull optical pumping (PPOP) on Cs D1 line. We point out that the push-pull interaction sche me is identical to the so-called lin per lin polarization scheme. Expressions of the relevant dark states, as well as of absorption, are reported. The experimental setup is based on the combination of a distributed feedback (DFB) diode laser, a pigtailed intensity Mach-Zehnder electro-optic modulator (MZ EOM) for optical sidebands generation and a Michelson-like interferometer. A microwave technique to stabilize the transfer function operating point of the MZ EOM is implemented for proper operation. A CPT resonance contrast as high as 78% is reported in a cm-scale cell for the magnetic-field insensitive clock transition. The impact of the laser intensity on the CPT clock signal key parameters (linewidth - contrast - linewidth/contrast ratio) is reported for three different cells with various dimensions and buffer gas contents. The potential of the PPOP technique for the development of high-performance atomic vapor cell clocks is discussed.
We theoretically study prospects and limitations of a new route towards macroscopic scale laser refrigeration based on exciplex-mediated frequency up-conversion in gas filled hollow-core fibres. Using proven quantum optical rate equations we model th e dynamics of a dopant-buffer gas mixture filling an optically pumped waveguide. In the particular example of alkali-noble gas mixtures, recent high pressure gas cell setup experiments have shown that efficient kinetic energy extraction cycles appear via the creation of transient exciplex excited electronic bound states. The cooling cycle consists of absorption of lower energy laser photons during collisions followed by blue-shifted spontaneous emission on the atomic line of the alkali atoms. For any arbitrary dopant-buffer gas mixture, we derive scaling laws for cooling power, cooling rates and temperature drops with varying input laser power, dopant and buffer gas concentration, fibre geometry and particularities of the exciplex ground and excited state potential landscapes.
Electromagnetically induced absorption (EIA) was observed on a sample of $% ^{85}Rb$ in a magneto-optical trap using low intensity cw copropagating pump and probe optical fields. At moderate trapping field intensity, the EIA spectrum is determined by the Zeeman effect produced on the atomic ground-state by the trapping quadrupolar magnetic field. The use of EIA spectroscopy for the magnetic field mapping of cold atomic samples is illustrated.
58 - H. Failache , P. Valente , G. Ban 2002
The explanation presented in [Taichenachev et al, Phys. Rev. A {bf 61}, 011802 (2000)] according to which the electromagnetically induced absorption (EIA) resonances observed in degenerate two level systems are due to coherence transfer from the exci ted to the ground state is experimentally tested in a Hanle type experiment observing the parametric resonance on the $% D1$ line of $^{87}$Rb. While EIA occurs in the $F=1to F^{prime}=2 $ transition in a cell containing only $Rb$ vapor, collisions with a buffer gas ($30 torr$ of $Ne$) cause the sign reversal of this resonance as a consequence of collisional decoherence of the excited state. A theoretical model in good qualitative agreement with the experimental results is presented.
A comprehensive study of three-photon electromagnetically-induced transparency (EIT) and absorption (EIA) on the rubidium cascade $5S_{1/2} rightarrow 5P_{3/2}$ (laser wavelength 780~nm), $5P_{3/2} rightarrow 5D_{5/2}$ (776~nm), and $5D_{5/2}rightarr ow 28F_{7/2}$ (1260~nm) is performed. The 780-nm probe and 776-nm dressing beams are counter-aligned through a Rb room-temperature vapor cell, and the 1260-nm coupler beam is co- or counter-aligned with the probe beam. Several cases of EIT and EIA, measured over a range of detunings of the 776-nm beam, are studied. The observed phenomena are modeled by numerically solving the Lindblad equation, and the results are interpreted in terms of the probe-beam absorption behavior of velocity- and detuning-dependent dressed states. To explore the utility of three-photon Rydberg EIA/EIT for microwave electric-field diagnostics, a sub-THz field generated by a signal source and a frequency quadrupler is applied to the Rb cell. The 100.633-GHz field resonantly drives the $28F_{7/2}leftrightarrow29D_{5/2}$ transition and causes Autler-Townes splittings in the Rydberg EIA/EIT spectra, which are measured and employed to characterize the performance of the microwave quadrupler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا