ﻻ يوجد ملخص باللغة العربية
Optical propagation time in matter could reveal fruitful information, such as the velocity of light and the samples refractive index. In this paper, we build a simple and robust setup for measuring the optical propagation time in matter for a known distance, the system uses high frequency square signal as the signal carrier, and a lock-in amplifier is employed to obtain the phase difference between the reference square signal and the other one penetrating the sample, in this way the optical time of flight in matter can be obtained by a background subtraction process. Primary experimental result confirms the feasibility of the newly proposed measuring theory, which can be used to measure easily in high-speed the speed of light and the refractive index of optical transparent material, compared with the currently popular measuring technique using oscilloscope, potential advantage of our proposed method employing lock-in amplifier is that high accuracy are promising, and in contrast with the presently most popular method for measuring the samples refractive index based on the minimum deviation angle, superiority of our suggested method is the easy preparation of the sample, the convenient operability and the fast measuring speed.
The setups for precise measurements of the time structure of Nuclotron internal and slowly extracted beams are described in both hardware and software aspects. The CAMAC hardware is based on the use of the standard CAMAC modules developed and manufac
We describe here a new concept of a Cherenkov detector for particle identification by means of measuring the Time-of-Propagation (TOP) of Cherenkov photons.
We describe a setup for performing inelastic X-ray scattering measurements at the Matter in Extreme Conditions (MEC) endstation of the Linac Coherent Light Source (LCLS). This technique is capable of performing high-, meV-resolution measurements of d
The main characteristics of the COMPASS experimental setup for physics with hadron beams are described. This setup was designed to perform exclusive measurements of processes with several charged and/or neutral particles in the final state. Making us
The Time-Of-Propagation (TOP) counter is a novel device for particle identification for the barrel region of the Belle II experiment, where, information of Cherenkov light propagation time is used to reconstruct its ring image. We successfully finish