ﻻ يوجد ملخص باللغة العربية
Advancements in computing based on qubit networks, and in particular the flux-qubit processor architecture developed by D-Wave Systems Inc., have enabled the physical simulation of quantum-dot cellular automata (QCA) networks beyond the limit of classical methods. However, the embedding of QCA networks onto the available processor architecture is a key challenge in preparing such simulations. In this work, two approaches to embedding QCA circuits are characterized: a dense placement algorithm that uses a routing method based on negotiated congestion; and a heuristic method implemented in D-Waves Solver API package. A set of benchmark QCA networks is used to characterise the algorithms and a stochastic circuit generator is employed to investigate the performance for different processor sizes and active flux-qubit yields.
Entanglement lies at the core of quantum algorithms designed to solve problems that are intractable by classical approaches. One such algorithm, quantum annealing (QA), provides a promising path to a practical quantum processor. We have built a serie
We introduce a quantum cellular automaton that achieves approximate phase-covariant cloning of qubits. The automaton is optimized for 1-to-2N economical cloning. The use of the automaton for cloning allows us to exploit different foliations for improving the performance with given resources.
There exists an index theory to classify strictly local quantum cellular automata in one dimension. We consider two classification questions. First, we study to what extent this index theory can be applied in higher dimensions via dimensional reducti
One can think of some physical evolutions as being the emergent-effective result of a microscopic discrete model. Inspired by classical coarse-graining procedures, we provide a simple procedure to coarse-grain color-blind quantum cellular automata th
In a series of recent papers it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm e