ﻻ يوجد ملخص باللغة العربية
Until recently, determining the rotational properties of galaxies in the early universe (z>4, Universe age <1.5Gyr) was impractical, with the exception of a few strongly lensed systems. Combining the high resolution and sensitivity of ALMA at (sub-) millimeter wavelengths with the typically high strength of the [CII] 158um emission line from galaxies and long-developed dynamical modeling tools raises the possibility of characterizing the gas dynamics in both extreme starburst galaxies and normal star forming disk galaxies at z~4-7. Using a procedure centered around GIPSYs ROTCUR task, we have fit tilted ring models to some of the best available ALMA [CII] data of a small set of galaxies: the MS galaxies HZ9 & HZ10, the Damped Lyman-alpha Absorber (DLA) host galaxy ALMA J0817+1351, the submm galaxies AzTEC/C159 and COSMOS J1000+0234, and the quasar host galaxy ULAS J1319+0950. This procedure directly derives rotation curves and dynamical masses as functions of radius for each object. In one case, we present evidence for a dark matter halo of O(10^11) solar masses. We present an analysis of the possible velocity dispersions of AzTEC/C159 and ULAS J1319+0950 based on matching simulated observations to the integrated [CII] line profiles. Finally, we test the effects of observation resolution and sensitivity on our results. While the conclusions remain limited at the resolution and signal-to-noise ratios of these observations, the results demonstrate the viability of the modeling tools at high redshift, and the exciting potential for detailed dynamical analysis of the earliest galaxies, as ALMA achieves full observational capabilities.
The ALMA-ALPINE [CII] survey is aimed at characterizing the properties of a sample of normal star-forming galaxies (SFGs). The ALMA Large Program to INvestigate (ALPINE) features 118 galaxies observed in the [CII]-158$mu$m line and far infrared (FIR)
We present the physical extent of [CII] 158um line-emitting gas from 46 star-forming galaxies at z=4-6 from the ALMA Large Program to INvestigate CII at Early Times (ALPINE). Using exponential profile fits, we measure the effective radius of the [CII
The Lya line in the UV and the [CII] line in the FIR are widely used tools to identify galaxies and to obtain insights into ISM properties in the early Universe. By combining data obtained with ALMA in band 7 at ~ 320 GHz as part of the ALMA Large Pr
We present a study of the [CII] 158micron line and underlying far-infrared (FIR) continuum emission of 27 quasar host galaxies at z~6, traced by the Atacama Large Millimeter/submillimeter Array at a spatial resolution of ~1 physical kpc. The [CII] em
We present high spatial-resolution (~2kpc) Atacama Large Millimeter/submillimeter Array (ALMA) observations of [CII] 158um and dust-continuum emission from a galaxy at z=3.7978 selected by its strong HI absorption (a damped Lya absorber, DLA) against