ﻻ يوجد ملخص باللغة العربية
Detailed modeling of stellar evolution requires a better understanding of the (magneto-)hydrodynamic processes which mix chemical elements and transport angular momentum. Understanding these pro- cesses is crucial if we are to accurately interpret observations of chemical abundance anomalies, surface rotation measurements and asteroseismic data. Here, we use two-dimensional hydrodynamic simula- tions of the generation and propagation of internal gravity waves (IGW) in an intermediate mass star to measure the chemical mixing induced by these waves. We show that such mixing can generally be treated as a diffusive process. We then show that the local diffusion coefficient does not depend on the local fluid velocity, but rather on the wave amplitude. We then use these findings to provide a simple parametrization for this diffusion which can be incorporated into stellar evolution codes and tested against observations.
The spectrum of oscillation modes of a star provides information not only about its material properties (e.g. mean density), but also its symmetries. Spherical symmetry can be broken by rotation and/or magnetic fields. It has been postulated that str
Recent photometric observations of massive stars show ubiquitous low-frequency red-noise variability, which has been interpreted as internal gravity waves (IGWs). Simulations of IGWs generated by convection show smooth surface wave spectra, qualitati
Sub-stellar objects exhibit photometric variability, which is believed to be caused by a number of processes, such as magnetically-driven spots or inhomogeneous cloud coverage. Recent models have shown that turbulent flows and waves, including intern
Early-type stars are predicted to excite an entire spectrum of internal gravity waves (IGWs) at the interface of their convective cores and radiative envelopes. Numerical simulations of IGWs predict stochastic low-frequency variability in photometric
During most of their life, stars fuse hydrogen into helium in their cores. The mixing of chemical elements in the radiative envelope of stars with a convective core is able to replenish the core with extra fuel. If effective, such deep mixing allows