ترغب بنشر مسار تعليمي؟ اضغط هنا

Pauli-Lubanski limit and stress-energy tensor for infinite-spin fields

256   0   0.0 ( 0 )
 نشر من قبل Karl-Henning Rehren
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

String-localized quantum fields transforming in Wigners infinite-spin representations were introduced by Mund, Schroer and Yngvason. We construct these fields as limits of fields of finite mass $mto 0$ and finite spin $stoinfty$. We determine a string-localized infinite-spin quantum stress-energy tensor with a novel prescription that does not refer to a classical Lagrangean.



قيم البحث

اقرأ أيضاً

We use the subleading soft-graviton theorem to construct an operator $T_{zz}$ whose insertion in the four-dimensional tree-level quantum gravity $mathcal{S}$-matrix obeys the Virasoro-Ward identities of the energy momentum tensor of a two-dimensional conformal field theory (CFT$_2$). The celestial sphere at Minkowskian null infinity plays the role of the Euclidean sphere of the CFT$_2$, with the Lorentz group acting as the unbroken $SL(2,mathbb{C})$ subgroup.
We construct massless infinite spin irreducible representations of the six-dimensional Poincar{e} group in the space of fields depending on twistor variables. It is shown that the massless infinite spin representation is realized on the two-twistor f ields. We present a full set of equations of motion for two-twistor fields represented by the totally symmetric $mathrm{SU}(2)$ rank $2s$ two-twistor spin-tensor and show that they carry massless infinite spin representations. A field twistor transform is constructed and infinite spin fields are found in the space-time formulation with an additional spinor coordinate.
Massive and massless potentials play an essential role in the perturbative formulation of particle interactions. Many difficulties arise due to the indefinite metric in gauge theoretic approaches, or the increase with the spin of the UV dimension of massive potentials. All these problems can be evaded in one stroke: modify the potentials by suitable terms that leave unchanged the field strengths, but are not polynomial in the momenta. This feature implies a weaker localization property: the potentials are string-localized. In this setting, several old issues can be solved directly in the physical Hilbert space of the respective particles: We can control the separation of helicities in the massless limit of higher spin fields and conversely we recover massive potentials with 2s+1 degrees of freedom by a smooth deformation of the massless potentials (fattening). We construct stress-energy tensors for massless fields of any helicity (thus evading the Weinberg-Witten theorem). We arrive at a simple understanding of the van Dam-Veltman-Zakharov discontinuity concerning, e.g., the distinction between a massless or a very light graviton. Finally, the use of string-localized fields opens new perspectives for interacting quantum field theories with, e.g., vector bosons or gravitons.
We discuss some general aspects of commutators of local operators in Lorentzian CFTs, which can be obtained from a suitable analytic continuation of the Euclidean operator product expansion (OPE). Commutators only make sense as distributions, and car e has to be taken to extract the right distribution from the OPE. We provide explicit computations in two and four-dimensional CFTs, focusing mainly on commutators of components of the stress-tensor. We rederive several familiar results, such as the canonical commutation relations of free field theory, the local form of the Poincare algebra, and the Virasoro algebra of two-dimensional CFT. We then consider commutators of light-ray operators built from the stress-tensor. Using simplifying features of the light sheet limit in four-dimensional CFT we provide a direct computation of the BMS algebra formed by a specific set of light-ray operators in theories with no light scalar conformal primaries. In four-dimensional CFT we define a new infinite set of light-ray operators constructed from the stress-tensor, which all have well-defined matrix elements. These are a direct generalization of the two-dimensional Virasoro light-ray operators that are obtained from a conformal embedding of Minkowski space in the Lorentzian cylinder. They obey Hermiticity conditions similar to their two-dimensional analogues, and also share the property that a semi-infinite subset annihilates the vacuum.
110 - F. Becattini , L. Tinti 2012
It is shown that different pairs of stress-energy and spin tensors of quantum relativistic fields related by a pseudo-gauge transformation, i.e. differing by a divergence, imply different mean values of physical quantities in thermodynamical nonequil ibrium situations. Most notably, transport coefficients and the total entropy production rate are affected by the choice of the spin tensor of the relativistic quantum field theory under consideration. Therefore, at least in principle, it should be possible to disprove a fundamental stress-energy tensor and/or to show that a fundamental spin tensor exists by means of a dissipative thermodynamical experiment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا