ترغب بنشر مسار تعليمي؟ اضغط هنا

Interaction and coherence of a plasmon-exciton polariton condensate

195   0   0.0 ( 0 )
 نشر من قبل Milena De Giorgi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Polaritons are quasiparticles arising from the strong coupling of electromagnetic waves in cavities and dipolar oscillations in a material medium. In this framework, localized surface plasmon in metallic nanoparticles defining optical nanocavities have attracted increasing interests in the last decade. This interest results from their sub-diffraction mode volume, which offers access to extremely high photonic densities by exploiting strong scattering cross-sections. However, high absorption losses in metals have hindered the observation of collective coherent phenomena, such as condensation. In this work we demonstrate the formation of a non-equilibrium room temperature plasmon-exciton-polariton condensate with a long range spatial coherence, extending a hundred of microns, well over the excitation area, by coupling Frenkel excitons in organic molecules to a multipolar mode in a lattice of plasmonic nanoparticles. Time-resolved experiments evidence the picosecond dynamics of the condensate and a sizeable blueshift, thus measuring for the first time the effect of polariton interactions in plasmonic cavities. Our results pave the way to the observation of room temperature superfluidity and novel nonlinear phenomena in plasmonic systems, challenging the common belief that absorption losses in metals prevent the realization of macroscopic quantum states.



قيم البحث

اقرأ أيضاً

Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensate s of light-matter coupled excitations, such as exciton polaritons, photons hybridized with hydrogen-like bound electron-hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized upon macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates.
Coherent bosonic ensembles offer the promise of harnessing quantum effects in photonic and quantum circuits. In the dynamic equilibrium regime, the application of polariton condensates is hindered by exciton-polariton scattering induced de-coherence in the presence of a dark exciton reservoir. By spatially separating the condensate from the reservoir, we drive the system into the weak interaction regime, where the ensemble coherence time exceeds the individual particle lifetime by nearly three orders of magnitude. The observed nanosecond coherence provides an upper limit for polariton self-interactions. In contrast to conventional photon lasers, we observe an increased contribution from the super-Poissonian component of the condensate to the overall particle number fluctuations. Coupled with the recent emergence of a quantum regime in polaritonics, coherence times extended to several nanoseconds favour the realization of quantum information protocols.
157 - Wei Bao , Xiaoze Liu , Fei Xue 2018
The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid state platform. Quantum coherence is possible only when there are strong interactions be tween the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principle value exhibit strong dipole-dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, for the first time, we observe the formation of REPs in a single crystal CsPbBr3 perovskite cavity without any external fields. These polaritons exhibit strong nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr3 are highly anisotropic and have a large extinction ratio, arising from the perovskites orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid state quantum optical information processing.
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral c omposite bosons consisting of electrons and holes, excitons show a non-trivial scattering dynamics. Here, we study on microscopic footing exciton-exciton interaction in transition-metal dichalcogenides and related van der Waals heterostructures. We demonstrate that the crucial criterion for efficient scattering is a large electron/hole mass asymmetry giving rise to internal charge inhomogeneities of excitons and emphasizing their cobosonic substructure. Furthermore, both exchange and direct exciton-exciton interactions are boosted by enhanced exciton Bohr radii. We also predict an unexpected temperature dependence that is usually associated to phonon-driven scattering and we reveal an orders of magnitude stronger interaction of interlayer excitons due to their permanent dipole moment. The developed approach can be generalized to arbitrary material systems and will help to study strongly correlated exciton systems, such as moire super lattices.
Optical control of electronic spins is the basis for ultrafast spintronics: circularly polarized light in combination with spin-orbit coupling of the electronic states allows for spin manipulation in condensed matter. However, the conventional approa ch is limited to spin orientation along one particular orientation that is dictated by the direction of photon propagation. Plasmonics opens new capabilities, allowing one to tailor the light polarization at the nanoscale. Here, we demonstrate ultrafast optical excitation of electron spin on femtosecond time scales via plasmon to exciton spin conversion. By time-resolving the THz spin dynamics in a hybrid (Cd,Mn)Te quantum well structure covered with a metallic grating, we unambiguously determine the orientation of the photoexcited electron spins which is locked to the propagation direction of surface plasmon-polaritons. Using the spin of the incident photons as additional degree of freedom, one can orient the photoexcited electron spin at will in a two-dimensional plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا