ﻻ يوجد ملخص باللغة العربية
We conduct an empirical study on discovering the ordered collective dynamics obtained by a population of intelligence agents, driven by million-agent reinforcement learning. Our intention is to put intelligent agents into a simulated natural context and verify if the principles developed in the real world could also be used in understanding an artificially-created intelligent population. To achieve this, we simulate a large-scale predator-prey world, where the laws of the world are designed by only the findings or logical equivalence that have been discovered in nature. We endow the agents with the intelligence based on deep reinforcement learning (DRL). In order to scale the population size up to millions agents, a large-scale DRL training platform with redesigned experience buffer is proposed. Our results show that the population dynamics of AI agents, driven only by each agents individual self-interest, reveals an ordered pattern that is similar to the Lotka-Volterra model studied in population biology. We further discover the emergent behaviors of collective adaptations in studying how the agents grouping behaviors will change with the environmental resources. Both of the two findings could be explained by the self-organization theory in nature.
In reinforcement learning, agents learn by performing actions and observing their outcomes. Sometimes, it is desirable for a human operator to textit{interrupt} an agent in order to prevent dangerous situations from happening. Yet, as part of their l
Most of the prior work on multi-agent reinforcement learning (MARL) achieves optimal collaboration by directly controlling the agents to maximize a common reward. In this paper, we aim to address this from a different angle. In particular, we conside
Multi-agent reinforcement learning (MARL) under partial observability has long been considered challenging, primarily due to the requirement for each agent to maintain a belief over all other agents local histories -- a domain that generally grows ex
Recently, deep reinforcement learning (RL) algorithms have made great progress in multi-agent domain. However, due to characteristics of RL, training for complex tasks would be resource-intensive and time-consuming. To meet this challenge, mutual lea
Microscopic epidemic models are powerful tools for government policy makers to predict and simulate epidemic outbreaks, which can capture the impact of individual behaviors on the macroscopic phenomenon. However, existing models only consider simple