ﻻ يوجد ملخص باللغة العربية
We present integrated-light spectra of 8 Young Massive Clusters (YMCs) in the metal-rich spiral galaxy NGC 5236 (M 83). The observations were taken with the X-Shooter spectrograph on the ESO Very Large Telescope. Through the use of theoretical isochrones and synthetic integrated-light (IL) spectra we derive metallicities and study the radial metallicity gradient observed through these young populations. For the inner regions of the galaxy we observe a relatively shallow metallicity gradient of $-$0.37 $pm$0.29 dex R$_{25}^{-1}$, agreeing with chemical evolution models with an absence of infall material and a relatively low mass loss due to winds in the inner parts of the disk. We estimate a central metallicity of [$Z$] = $+$0.17 $pm$ 0.12 dex, finding excellent agreement with that obtained via other methods (e.g. blue supergiants and J-band). We infer a metallicity of 12+log(O/H) = 8.75 $pm$ 0.08 dex at R/R$_{25}$ = 0.4, which fits the stellar mass-metallicity relation (MZR) compilation of blue supergiants and IL studies.
The circumnuclear starburst of M83 (NGC 5236), the nearest such example (4.6 Mpc), constitutes an ideal site for studying the massive star IMF at high metallicity (12+log[O/H]=9.1$pm$0.2, Bresolin & Kennicutt 2002). We analyzed archival HST/STIS FUV
The formation mechanism of super star clusters (SSCs), a present-day analog of the ancient globulars, still remains elusive. The major merger, the Antennae galaxies is forming SSCs and is one of the primary targets to test the cluster formation mecha
The nearby dwarf starburst galaxy NGC5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the `radio nebula). To investigate the role of these clusters in
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c