ﻻ يوجد ملخص باللغة العربية
{Context}. The HIFI instrument on the Herschel Space Observatory performed over 9100 astronomical observations, almost 900 of which were calibration observations in the course of the nearly four-year Herschel mission. The data from each observation had to be converted from raw telemetry into calibrated products and were included in the Herschel Science Archive. {Aims}. The HIFI pipeline was designed to provide robust conversion from raw telemetry into calibrated data throughout all phases of the HIFI missions. Pre-launch laboratory testing was supported as were routine mission operations. {Methods}. A modular software design allowed components to be easily added, removed, amended and/or extended as the understanding of the HIFI data developed during and after mission operations. {Results}. The HIFI pipeline processed data from all HIFI observing modes within the Herschel automated processing environment as well as within an interactive environment. The same software can be used by the general astronomical community to reprocess any standard HIFI observation. The pipeline also recorded the consistency of processing results and provided automated quality reports. Many pipeline modules were in use since the HIFI pre-launch instrument level testing. {Conclusions}. Processing in steps facilitated data analysis to discover and address instrument artefacts and uncertainties. The availability of the same pipeline components from pre-launch throughout the mission made for well-understood, tested, and stable processing. A smooth transition from one phase to the next significantly enhanced processing reliability and robustness.
The HIFI data processing pipeline was developed to systematically process diagnostic, calibration and astronomical observations taken with the HIFI science instrumentas part of the Herschel mission. The HIFI pipeline processed data from all HIFI obse
We present the data processing pipeline to generate calibrated data products from the Spectral and Photometric Imaging Receiver (SPIRE) imaging Fourier Transform Spectrometer on the Herschel Space Observatory. The pipeline processes telemetry from SP
The Tianlai project is a 21cm intensity mapping experiment aimed at detecting dark energy by measuring the baryon acoustic oscillation (BAO) features in the large scale structure power spectrum. This experiment provides an opportunity to test the dat
Processing of raw data from modern astronomical instruments is nowadays often carried out using dedicated software, so-called pipelines which are largely run in automated operation. In this paper we describe the data reduction pipeline of the Multi U
We describe the processing of the PHANGS-ALMA survey and present the PHANGS-ALMA pipeline, a public software package that processes calibrated interferometric and total power data into science-ready data products. PHANGS-ALMA is a large, high-resolut