ﻻ يوجد ملخص باللغة العربية
We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that, even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.
More and more works deal with statistical systems far from equilibrium, dominated by unidirectional stochastic processes augmented by rare resets. We analyze the construction of the entropic distance measure appropriate for such dynamics. We demonstr
In computer simulations, quantum delocalization of atomic nuclei can be modeled making use of the Path Integral (PI) formulation of quantum statistical mechanics. This approach, however, comes with a large computational cost. By restricting the PI mo
Systems operating out of equilibrium exchange energy and matter with the environment, thus producing entropy in their surroundings. Since the entropy production depends on the current flowing throughout the system, its quantification is affected by t
Path integral-based simulation methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. T
Understanding system-bath correlations in open quantum systems is essential for various quantum information and technology applications. Derivations of most master equations (MEs) for the dynamics of open systems require approximations that mask depe